123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510 |
- /*
- * MIT License
- *
- * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>
- *
- * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy of this
- * software and associated documentation files (the "Software"), to deal in the Software
- * without restriction, including without limitation the rights to use, copy, modify,
- * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
- * to permit persons to whom the Software is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice shall be included in all copies
- * or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
- * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
- * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
- * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
- package snakesimulator
- import (
- context "context"
- fmt "fmt"
- math "math"
- "math/rand"
- "net"
- "sort"
- "sync"
- "time"
- "gonum.org/v1/gonum/mat"
- genetic "git.semlanik.org/semlanik/NeuralNetwork/genetic"
- neuralnetwork "git.semlanik.org/semlanik/NeuralNetwork/neuralnetwork"
- grpc "google.golang.org/grpc"
- )
- type SnakeSimulator struct {
- field *Field
- snake *Snake
- maxVerificationSteps int
- stats *Stats
- //GUI interface part
- speed uint32
- fieldUpdateQueue chan bool
- snakeUpdateQueue chan bool
- statsUpdateQueue chan bool
- isPlayingUpdateQueue chan bool
- speedQueue chan uint32
- isPlaying bool
- repeatInLoop bool
- snakeReadMutex sync.Mutex
- fieldReadMutex sync.Mutex
- }
- // Initializes new snake population with maximum number of verification steps
- func NewSnakeSimulator(maxVerificationSteps int) (s *SnakeSimulator) {
- s = &SnakeSimulator{
- field: &Field{
- Food: &Point{},
- Width: 40,
- Height: 40,
- },
- snake: &Snake{
- Points: []*Point{
- &Point{X: 20, Y: 20},
- &Point{X: 21, Y: 20},
- &Point{X: 22, Y: 20},
- },
- },
- stats: &Stats{},
- maxVerificationSteps: maxVerificationSteps,
- fieldUpdateQueue: make(chan bool, 2),
- snakeUpdateQueue: make(chan bool, 2),
- statsUpdateQueue: make(chan bool, 2),
- isPlayingUpdateQueue: make(chan bool, 1),
- speedQueue: make(chan uint32, 1),
- speed: 10,
- }
- return
- }
- // Population test method
- // Verifies population and returns unsorted finteses for each individual
- func (s *SnakeSimulator) Verify(population *genetic.Population) (fitnesses []*genetic.IndividalFitness) {
- s.stats.Generation++
- s.statsUpdateQueue <- true
- s.field.GenerateNextFood()
- if s.speed > 0 {
- s.fieldUpdateQueue <- true
- }
- fitnesses = make([]*genetic.IndividalFitness, len(population.Networks))
- for index, inidividual := range population.Networks {
- s.stats.Individual = uint32(index)
- s.statsUpdateQueue <- true
- s.runSnake(inidividual, false)
- fitnesses[index] = &genetic.IndividalFitness{
- // Fitness: float64(s.stats.Move), //Uncomment this to decrese food impact to individual selection
- Fitness: float64(s.stats.Move) * float64(len(s.snake.Points)-2),
- Index: index,
- }
- }
- //This is duplication of crossbreedPopulation functionality to display best snake
- sort.Slice(fitnesses, func(i, j int) bool {
- return fitnesses[i].Fitness > fitnesses[j].Fitness //Descent order best will be on top, worst in the bottom
- })
- //Best snake showtime!
- s.fieldReadMutex.Lock()
- s.field.GenerateNextFood()
- s.fieldReadMutex.Unlock()
- s.fieldUpdateQueue <- true
- prevSpeed := s.speed
- s.speed = 5
- if s.isPlaying == true {
- // Play best of the best
- s.isPlaying = false
- s.isPlayingUpdateQueue <- s.isPlaying
- s.runSnake(population.GetBestNetwork(), false)
- population.GetBestNetwork().SetStateWatcher(nil)
- } else {
- // Play best from generation
- s.runSnake(population.Networks[fitnesses[0].Index], false)
- population.Networks[fitnesses[0].Index].SetStateWatcher(nil)
- }
- s.speed = prevSpeed
- return
- }
- func (s *SnakeSimulator) PlayBestNetwork(network *neuralnetwork.NeuralNetwork) {
- for s.repeatInLoop {
- s.stats.Generation++
- s.statsUpdateQueue <- true
- s.field.GenerateNextFood()
- if s.speed > 0 {
- s.fieldUpdateQueue <- true
- }
- //Best snake showtime!
- s.fieldReadMutex.Lock()
- s.field.GenerateNextFood()
- s.fieldReadMutex.Unlock()
- s.fieldUpdateQueue <- true
- s.isPlaying = false
- s.isPlayingUpdateQueue <- s.isPlaying
- prevSpeed := s.speed
- s.speed = 5
- s.runSnake(network, false)
- network.SetStateWatcher(nil)
- s.speed = prevSpeed
- }
- }
- func (s *SnakeSimulator) runSnake(inidividual *neuralnetwork.NeuralNetwork, randomStart bool) {
- s.snakeReadMutex.Lock()
- if randomStart {
- rand.Seed(time.Now().UnixNano())
- s.snake = NewSnake(Direction(rand.Uint32()%4), *s.field)
- } else {
- s.snake = NewSnake(Direction_Left, *s.field)
- }
- s.snakeReadMutex.Unlock()
- s.stats.Move = 0
- for i := 0; i < s.maxVerificationSteps; i++ {
- //Read speed from client and sleep in case if user selected slow preview
- select {
- case newSpeed := <-s.speedQueue:
- fmt.Printf("Apply new speed: %v\n", newSpeed)
- if newSpeed <= 10 && newSpeed >= 0 {
- s.speed = newSpeed
- } else if newSpeed < 0 {
- s.speed = 0
- }
- default:
- }
- if s.speed > 0 {
- time.Sleep(100 / time.Duration(s.speed) * time.Millisecond)
- s.statsUpdateQueue <- true
- s.snakeUpdateQueue <- true
- }
- predictIndex, _ := inidividual.Predict(mat.NewDense(inidividual.Sizes[0], 1, s.getHeadState()))
- direction := Direction(predictIndex + 1)
- newHead := s.snake.NewHead(direction)
- if s.snake.selfCollision(newHead, direction) {
- fmt.Printf("Game over self collision\n")
- break
- } else if wallCollision(newHead, *s.field) {
- break
- } else if foodCollision(newHead, s.field.Food) {
- i = 0
- s.snakeReadMutex.Lock()
- s.snake.Feed(newHead)
- s.snakeReadMutex.Unlock()
- s.fieldReadMutex.Lock()
- s.field.GenerateNextFood()
- s.fieldReadMutex.Unlock()
- if s.speed > 0 {
- s.fieldUpdateQueue <- true
- }
- } else {
- s.snakeReadMutex.Lock()
- s.snake.Move(newHead)
- s.snakeReadMutex.Unlock()
- }
- s.stats.Move++
- }
- }
- // Produces input activations for neural network
- func (s *SnakeSimulator) getHeadState() []float64 {
- // Snake state
- headX := float64(s.snake.Points[0].X)
- headY := float64(s.snake.Points[0].Y)
- tailX := float64(s.snake.Points[len(s.snake.Points)-1].X)
- tailY := float64(s.snake.Points[len(s.snake.Points)-1].Y)
- // Field state
- foodX := float64(s.field.Food.X)
- foodY := float64(s.field.Food.Y)
- width := float64(s.field.Width)
- height := float64(s.field.Height)
- diag := float64(width) * math.Sqrt2 //We assume that field is always square
- // Output activations
- // Distance to walls in 4 directions
- lWall := headX
- rWall := (width - headX)
- tWall := headY
- bWall := (height - headY)
- // Distance to walls in 4 diagonal directions, by default is completely inactive
- tlWall := float64(0)
- trWall := float64(0)
- blWall := float64(0)
- brWall := float64(0)
- // Distance to food in 4 directions
- // By default is size of field that means that there is no activation at all
- lFood := float64(width)
- rFood := float64(width)
- tFood := float64(height)
- bFood := float64(height)
- // Distance to food in 4 diagonal directions
- // By default is size of field diagonal that means that there is no activation
- // at all
- tlFood := float64(diag)
- trFood := float64(diag)
- blFood := float64(diag)
- brFood := float64(diag)
- // Distance to tail in 4 directions
- tTail := float64(0)
- bTail := float64(0)
- lTail := float64(0)
- rTail := float64(0)
- // Distance to tail in 4 diagonal directions
- tlTail := float64(0)
- trTail := float64(0)
- blTail := float64(0)
- brTail := float64(0)
- // Diagonal distance to each wall
- if lWall > tWall {
- tlWall = float64(tWall) * math.Sqrt2
- } else {
- tlWall = float64(lWall) * math.Sqrt2
- }
- if rWall > tWall {
- trWall = float64(tWall) * math.Sqrt2
- } else {
- trWall = float64(rWall) * math.Sqrt2
- }
- if lWall > bWall {
- blWall = float64(bWall) * math.Sqrt2
- } else {
- blWall = float64(lWall) * math.Sqrt2
- }
- if rWall > bWall {
- blWall = float64(bWall) * math.Sqrt2
- } else {
- brWall = float64(rWall) * math.Sqrt2
- }
- // Check if food is on same vertical line with head and
- // choose vertical direction for activation
- if headX == foodX {
- if headY-foodY > 0 {
- tFood = 0
- } else {
- bFood = 0
- }
- }
- // Check if food is on same horizontal line with head and
- // choose horizontal direction for activation
- if headY == foodY {
- if headX-foodX > 0 {
- lFood = 0
- } else {
- rFood = 0
- }
- }
- //Check if food is on diagonal any of 4 ways
- if math.Abs(foodY-headY) == math.Abs(foodX-headX) {
- //Choose diagonal direction to food
- if foodX > headX {
- if foodY > headY {
- trFood = 0
- } else {
- brFood = 0
- }
- } else {
- if foodY > headY {
- tlFood = 0
- } else {
- blFood = 0
- }
- }
- }
- // Check if tail is on same vertical line with head and
- // choose vertical direction for activation
- if headX == tailX {
- if headY-tailY > 0 {
- tTail = headY - tailY
- } else {
- bTail = headY - tailY
- }
- }
- // Check if tail is on same horizontal line with head and
- // choose horizontal direction for activation
- if headY == tailY {
- if headX-tailX > 0 {
- rTail = headX - tailX
- } else {
- lTail = headX - tailX
- }
- }
- //Check if tail is on diagonal any of 4 ways
- if math.Abs(headY-tailY) == math.Abs(headX-tailX) {
- //Choose diagonal direction to tail
- if tailY > headY {
- if tailX > headX {
- trTail = diag
- } else {
- tlTail = diag
- }
- } else {
- if tailX > headX {
- brTail = diag
- } else {
- blTail = diag
- }
- }
- }
- return []float64{
- lWall / width,
- rWall / width,
- tWall / height,
- bWall / height,
- tlWall / diag,
- trWall / diag,
- blWall / diag,
- brWall / diag,
- (1.0 - lFood/width),
- (1.0 - rFood/width),
- (1.0 - tFood/height),
- (1.0 - bFood/height),
- (1.0 - tlFood/diag),
- (1.0 - trFood/diag),
- (1.0 - blFood/diag),
- (1.0 - brFood/diag),
- tTail / height,
- bTail / height,
- lTail / width,
- rTail / width,
- tlTail / diag,
- trTail / diag,
- blTail / diag,
- brTail / diag,
- }
- }
- // Server part
- // Runs gRPC server for GUI
- func (s *SnakeSimulator) StartServer() {
- go func() {
- grpcServer := grpc.NewServer()
- RegisterSnakeSimulatorServer(grpcServer, s)
- lis, err := net.Listen("tcp", "localhost:65002")
- if err != nil {
- fmt.Printf("Failed to listen: %v\n", err)
- }
- fmt.Printf("Listen SnakeSimulator localhost:65002\n")
- if err := grpcServer.Serve(lis); err != nil {
- fmt.Printf("Failed to serve: %v\n", err)
- }
- }()
- }
- // Steaming of Field updates
- func (s *SnakeSimulator) Field(_ *None, srv SnakeSimulator_FieldServer) error {
- ctx := srv.Context()
- for {
- select {
- case <-ctx.Done():
- return ctx.Err()
- default:
- }
- s.snakeReadMutex.Lock()
- srv.Send(s.field)
- s.snakeReadMutex.Unlock()
- <-s.fieldUpdateQueue
- }
- }
- // Steaming of Snake position and length updates
- func (s *SnakeSimulator) Snake(_ *None, srv SnakeSimulator_SnakeServer) error {
- ctx := srv.Context()
- for {
- select {
- case <-ctx.Done():
- return ctx.Err()
- default:
- }
- srv.Send(s.snake)
- <-s.snakeUpdateQueue
- }
- }
- // Steaming of snake simulator statistic
- func (s *SnakeSimulator) Stats(_ *None, srv SnakeSimulator_StatsServer) error {
- ctx := srv.Context()
- for {
- select {
- case <-ctx.Done():
- return ctx.Err()
- default:
- }
- s.fieldReadMutex.Lock()
- srv.Send(s.stats)
- s.fieldReadMutex.Unlock()
- <-s.statsUpdateQueue
- }
- }
- // Setup new speed requested from gRPC GUI client
- func (s *SnakeSimulator) SetSpeed(ctx context.Context, speed *Speed) (*None, error) {
- s.speedQueue <- speed.Speed
- return &None{}, nil
- }
- // Ask to play requested from gRPC GUI client
- func (s *SnakeSimulator) PlayBest(ctx context.Context, _ *None) (*None, error) {
- s.isPlaying = true
- s.isPlayingUpdateQueue <- s.isPlaying
- return &None{}, nil
- }
- // Play in loop
- func (s *SnakeSimulator) PlayBestInLoop(_ context.Context, playBest *PlayingBestState) (*None, error) {
- s.repeatInLoop = playBest.State
- return &None{}, nil
- }
- // State of playing
- func (s *SnakeSimulator) IsPlaying(_ *None, srv SnakeSimulator_IsPlayingServer) error {
- ctx := srv.Context()
- for {
- select {
- case <-ctx.Done():
- return ctx.Err()
- default:
- }
- srv.Send(&PlayingBestState{
- State: s.isPlaying,
- })
- <-s.isPlayingUpdateQueue
- }
- }
|