123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- package remotecontrol
- import (
- context "context"
- fmt "fmt"
- "log"
- "net"
- "os"
- "sync"
- "time"
- "google.golang.org/grpc/codes"
- status "google.golang.org/grpc/status"
- neuralnetwork "../neuralnetwork"
- "gonum.org/v1/gonum/mat"
- grpc "google.golang.org/grpc"
- teach "../teach"
- )
- type RemoteControl struct {
- nn *neuralnetwork.NeuralNetwork
- activationsQueue chan *LayerMatrix
- biasesQueue chan *LayerMatrix
- weightsQueue chan *LayerMatrix
- stateQueue chan int
- mutex sync.Mutex
- }
- func (rw *RemoteControl) Init(nn *neuralnetwork.NeuralNetwork) {
- rw.nn = nn
- rw.activationsQueue = make(chan *LayerMatrix, 5)
- rw.biasesQueue = make(chan *LayerMatrix, 5)
- rw.weightsQueue = make(chan *LayerMatrix, 5)
- rw.stateQueue = make(chan int, 2)
- }
- func (rw *RemoteControl) UpdateActivations(l int, a *mat.Dense) {
- matrix := NewLayerMatrix(l, a, LayerMatrix_Activations)
- select {
- case rw.activationsQueue <- matrix:
- default:
- }
- }
- func (rw *RemoteControl) UpdateBiases(l int, biases *mat.Dense) {
- matrix := NewLayerMatrix(l, biases, LayerMatrix_Biases)
- select {
- case rw.biasesQueue <- matrix:
- default:
- }
- }
- func (rw *RemoteControl) UpdateWeights(l int, weights *mat.Dense) {
- matrix := NewLayerMatrix(l, weights, LayerMatrix_Weights)
- select {
- case rw.weightsQueue <- matrix:
- default:
- }
- }
- func (rw *RemoteControl) UpdateState(state int) {
- select {
- case rw.stateQueue <- state:
- default:
- }
- }
- func NewLayerMatrix(l int, dense *mat.Dense, contentType LayerMatrix_ContentType) (matrix *LayerMatrix) {
- buffer, err := dense.MarshalBinary()
- if err != nil {
- log.Fatalln("Invalid dense is provided for remote control")
- }
- matrix = &LayerMatrix{
- Matrix: &Matrix{
- Matrix: buffer,
- },
- Layer: int32(l),
- ContentType: contentType,
- }
- return
- }
- func (rw *RemoteControl) GetConfiguration(context.Context, *None) (*Configuration, error) {
- config := &Configuration{}
- for _, size := range rw.nn.Sizes {
- config.Sizes = append(config.Sizes, int32(size))
- }
- return config, nil
- }
- func (rw *RemoteControl) Activations(_ *None, srv RemoteControl_ActivationsServer) error {
- ctx := srv.Context()
- for {
- select {
- case <-ctx.Done():
- return ctx.Err()
- default:
- }
- msg := <-rw.activationsQueue
- srv.Send(msg)
- }
- }
- func (rw *RemoteControl) Biases(_ *None, srv RemoteControl_BiasesServer) error {
- ctx := srv.Context()
- for {
- select {
- case <-ctx.Done():
- return ctx.Err()
- default:
- }
- msg := <-rw.biasesQueue
- srv.Send(msg)
- }
- }
- func (rw *RemoteControl) Weights(_ *None, srv RemoteControl_WeightsServer) error {
- ctx := srv.Context()
- for {
- select {
- case <-ctx.Done():
- return ctx.Err()
- default:
- }
- msg := <-rw.weightsQueue
- srv.Send(msg)
- }
- }
- func (rw *RemoteControl) State(_ *None, srv RemoteControl_StateServer) error {
- ctx := srv.Context()
- for {
- select {
- case <-ctx.Done():
- return ctx.Err()
- default:
- }
- state := <-rw.stateQueue
- msg := &NetworkState{
- State: NetworkState_State(state),
- }
- fmt.Printf("Send state %v %v\n", msg, state)
- srv.Send(msg)
- }
- }
- func (rw *RemoteControl) Predict(context.Context, *Matrix) (*Matrix, error) {
- return nil, status.Error(codes.Unimplemented, "Not implemented")
- }
- func (rw *RemoteControl) DummyStart(context.Context, *None) (*None, error) {
- go func() {
- rw.mutex.Lock()
- defer rw.mutex.Unlock()
-
- teacher := teach.NewTextDataReader("wine.data", 5)
- rw.nn.Teach(teacher, 500)
-
-
-
-
-
-
-
-
- outFile, err := os.OpenFile("./data", os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0666)
- if err != nil {
- log.Fatal(err)
- }
- defer outFile.Close()
- rw.nn.SaveState(outFile)
- outFile.Close()
- rw.UpdateState(neuralnetwork.StateLearning)
- defer rw.UpdateState(neuralnetwork.StateIdle)
- failCount := 0
- teacher.Reset()
- for teacher.NextValidator() {
- dataSet, expect := teacher.GetValidator()
- index, _ := rw.nn.Predict(dataSet)
-
- time.Sleep(400 * time.Millisecond)
- if expect.At(index, 0) != 1.0 {
- failCount++
-
- }
- if !teacher.NextValidator() {
- fmt.Printf("Fail count: %v\n\n", failCount)
- failCount = 0
- teacher.Reset()
- }
- }
- fmt.Printf("Fail count: %v\n\n", failCount)
- failCount = 0
- teacher.Reset()
- rw.UpdateState(neuralnetwork.StateIdle)
- }()
- return &None{}, nil
- }
- func (rw *RemoteControl) Run() {
- grpcServer := grpc.NewServer()
- RegisterRemoteControlServer(grpcServer, rw)
- lis, err := net.Listen("tcp", "localhost:65001")
- if err != nil {
- fmt.Printf("Failed to listen: %v\n", err)
- }
- fmt.Printf("Listen localhost:65001\n")
- if err := grpcServer.Serve(lis); err != nil {
- fmt.Printf("Failed to serve: %v\n", err)
- }
- }
|