12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- /*
- * MIT License
- *
- * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>
- *
- * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy of this
- * software and associated documentation files (the "Software"), to deal in the Software
- * without restriction, including without limitation the rights to use, copy, modify,
- * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
- * to permit persons to whom the Software is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice shall be included in all copies
- * or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
- * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
- * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
- * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
- package neuralnetworkbase
- import (
- "math"
- rand "math/rand"
- "time"
- mat "gonum.org/v1/gonum/mat"
- )
- func generateRandomDense(rows, columns int) *mat.Dense {
- rand.Seed(time.Now().UnixNano())
- data := make([]float64, rows*columns)
- for i := range data {
- data[i] = rand.NormFloat64()
- }
- return mat.NewDense(rows, columns, data)
- }
- func applySigmoid(_, _ int, x float64) float64 {
- return sigmoid(x)
- }
- func applySigmoidPrime(_, _ int, x float64) float64 {
- return sigmoidPrime(x)
- }
- func sigmoid(x float64) float64 {
- return 1.0 / (1.0 + math.Exp(-x))
- }
- func sigmoidPrime(x float64) float64 {
- return sigmoid(x) * (1 - sigmoid(x))
- }
- func makeBackGradient(in mat.Matrix, actual mat.Matrix, alpha float64) *mat.Dense {
- // Gradient change of actual matrix using:
- // m[l]′ = m[l] − η * ∂C/∂m
- // Where ∂C/∂m is `in` matrix
- scaled := &mat.Dense{}
- result := &mat.Dense{}
- // η * ∂C/∂m
- scaled.Scale(alpha, in)
- // m[l] − η * ∂C/∂m
- result.Sub(actual, scaled)
- return result
- }
|