/* * MIT License * * Copyright (c) 2019 Alexey Edelev * * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * software and associated documentation files (the "Software"), to deal in the Software * without restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, and * to permit persons to whom the Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be included in all copies * or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ package neuralnetworkbase import ( "math" rand "math/rand" "time" mat "gonum.org/v1/gonum/mat" ) func generateRandomDense(rows, columns int) *mat.Dense { rand.Seed(time.Now().UnixNano()) data := make([]float64, rows*columns) for i := range data { data[i] = rand.NormFloat64() } return mat.NewDense(rows, columns, data) } func applySigmoid(_, _ int, x float64) float64 { return sigmoid(x) } func applySigmoidPrime(_, _ int, x float64) float64 { return sigmoidPrime(x) } func sigmoid(x float64) float64 { return 1.0 / (1.0 + math.Exp(-x)) } func sigmoidPrime(x float64) float64 { return sigmoid(x) * (1 - sigmoid(x)) } func makeBackGradient(in mat.Matrix, actual mat.Matrix, alpha float64) *mat.Dense { // Gradient change of actual matrix using: // m[l]′ = m[l] − η * ∂C/∂m // Where ∂C/∂m is `in` matrix scaled := &mat.Dense{} result := &mat.Dense{} // η * ∂C/∂m scaled.Scale(alpha, in) // m[l] − η * ∂C/∂m result.Sub(actual, scaled) return result }