|
@@ -1,3 +1,28 @@
|
|
|
+/*
|
|
|
+ * MIT License
|
|
|
+ *
|
|
|
+ * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>
|
|
|
+ *
|
|
|
+ * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
|
|
|
+ *
|
|
|
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of this
|
|
|
+ * software and associated documentation files (the "Software"), to deal in the Software
|
|
|
+ * without restriction, including without limitation the rights to use, copy, modify,
|
|
|
+ * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
|
|
|
+ * to permit persons to whom the Software is furnished to do so, subject to the following
|
|
|
+ * conditions:
|
|
|
+ *
|
|
|
+ * The above copyright notice and this permission notice shall be included in all copies
|
|
|
+ * or substantial portions of the Software.
|
|
|
+ *
|
|
|
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
|
|
+ * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
|
|
+ * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
|
|
|
+ * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
|
+ * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
+ * DEALINGS IN THE SOFTWARE.
|
|
|
+ */
|
|
|
+
|
|
|
package main
|
|
|
|
|
|
import (
|
|
@@ -11,57 +36,4 @@ func main() {
|
|
|
s.StartServer()
|
|
|
p := genetic.NewPopulation(s, mutagen.NewDummyMutagen(1.0, 1), genetic.PopulationConfig{PopulationSize: 2000, SelectionSize: 0.01, CrossbreedPart: 0.5}, []int{24, 18, 18, 4})
|
|
|
p.NaturalSelection(5000)
|
|
|
- // s.Run()
|
|
|
-
|
|
|
- // sizes := []int{13, 8, 12, 3}
|
|
|
- // nn, _ := neuralnetwork.NewNeuralNetwork(sizes, neuralnetwork.NewRPropInitializer(neuralnetwork.RPropConfig{
|
|
|
- // NuPlus: 1.2,
|
|
|
- // NuMinus: 0.5,
|
|
|
- // DeltaMax: 50.0,
|
|
|
- // DeltaMin: 0.000001,
|
|
|
- // }))
|
|
|
-
|
|
|
- // nn.SetStateWatcher(rc)
|
|
|
- // rc.Run()
|
|
|
-
|
|
|
- // inFile, err := os.Open("./networkstate")
|
|
|
- // if err != nil {
|
|
|
- // log.Fatal(err)
|
|
|
- // }
|
|
|
- // defer inFile.Close()
|
|
|
- // nn.LoadState(inFile)
|
|
|
-
|
|
|
- // nn, _ := neuralnetwork.NewNeuralNetwork(sizes, neuralnetwork.NewBackPropInitializer(0.1))
|
|
|
-
|
|
|
- // for i := 0; i < nn.Count; i++ {
|
|
|
- // if i > 0 {
|
|
|
- // fmt.Printf("Weights before:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0)))
|
|
|
- // fmt.Printf("Biases before:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0)))
|
|
|
- // fmt.Printf("Z before:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0)))
|
|
|
- // }
|
|
|
- // fmt.Printf("A before:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0)))
|
|
|
- // }
|
|
|
-
|
|
|
- // nn = &neuralnetwork.NeuralNetwork{}
|
|
|
- // inFile, err := os.Open("./data")
|
|
|
- // if err != nil {
|
|
|
- // log.Fatal(err)
|
|
|
- // }
|
|
|
- // defer inFile.Close()
|
|
|
- // nn.LoadState(inFile)
|
|
|
- // inFile.Close()
|
|
|
-
|
|
|
- // failCount = 0
|
|
|
- // training.Reset()
|
|
|
- // for training.NextValidator() {
|
|
|
- // dataSet, expect := training.GetValidator()
|
|
|
- // index, _ := nn.Predict(dataSet)
|
|
|
- // if expect.At(index, 0) != 1.0 {
|
|
|
- // failCount++
|
|
|
- // // fmt.Printf("Fail: %v, %v\n\n", training.ValidationIndex(), expect.At(index, 0))
|
|
|
- // }
|
|
|
- // }
|
|
|
-
|
|
|
- // fmt.Printf("Fail count: %v\n\n", failCount)
|
|
|
-
|
|
|
}
|