|
@@ -107,6 +107,7 @@ type NeuralNetwork struct {
|
|
|
WGradient []interface{}
|
|
|
gradientDescentInitializer GradientDescentInitializer
|
|
|
watcher StateWatcher
|
|
|
+ syncMutex sync.Mutex
|
|
|
}
|
|
|
|
|
|
func NewNeuralNetwork(sizes []int, gradientDescentInitializer GradientDescentInitializer) (nn *NeuralNetwork, err error) {
|
|
@@ -176,6 +177,8 @@ func (nn *NeuralNetwork) SetStateWatcher(watcher StateWatcher) {
|
|
|
}
|
|
|
|
|
|
func (nn *NeuralNetwork) Predict(aIn mat.Matrix) (maxIndex int, max float64) {
|
|
|
+ nn.syncMutex.Lock()
|
|
|
+ defer nn.syncMutex.Unlock()
|
|
|
if nn.watcher != nil {
|
|
|
nn.watcher.UpdateState(StatePredict)
|
|
|
defer nn.watcher.UpdateState(StateIdle)
|
|
@@ -217,6 +220,7 @@ func (nn *NeuralNetwork) Train(trainer training.Trainer, epocs int) {
|
|
|
func (nn *NeuralNetwork) TrainOnline(trainer training.Trainer, epocs int) {
|
|
|
for t := 0; t < epocs; t++ {
|
|
|
for trainer.NextData() {
|
|
|
+ nn.syncMutex.Lock()
|
|
|
dB, dW := nn.backward(trainer.GetData())
|
|
|
for l := 1; l < nn.LayerCount; l++ {
|
|
|
bGradient, ok := nn.BGradient[l].(OnlineGradientDescent)
|
|
@@ -234,6 +238,7 @@ func (nn *NeuralNetwork) TrainOnline(trainer training.Trainer, epocs int) {
|
|
|
nn.watcher.UpdateWeights(l, nn.Weights[l])
|
|
|
}
|
|
|
}
|
|
|
+ nn.syncMutex.Unlock()
|
|
|
}
|
|
|
trainer.Reset()
|
|
|
}
|
|
@@ -243,7 +248,7 @@ func (nn *NeuralNetwork) TrainBatch(trainer training.Trainer, epocs int) {
|
|
|
fmt.Printf("Start training in %v threads\n", runtime.NumCPU())
|
|
|
for t := 0; t < epocs; t++ {
|
|
|
batchWorkers := nn.runBatchWorkers(runtime.NumCPU(), trainer)
|
|
|
-
|
|
|
+ nn.syncMutex.Lock()
|
|
|
for l := 1; l < nn.LayerCount; l++ {
|
|
|
bGradient, ok := nn.BGradient[l].(BatchGradientDescent)
|
|
|
if !ok {
|
|
@@ -265,6 +270,7 @@ func (nn *NeuralNetwork) TrainBatch(trainer training.Trainer, epocs int) {
|
|
|
nn.watcher.UpdateWeights(l, nn.Weights[l])
|
|
|
}
|
|
|
}
|
|
|
+ nn.syncMutex.Unlock()
|
|
|
//TODO: remove this is not used for visualization
|
|
|
time.Sleep(100 * time.Millisecond)
|
|
|
}
|
|
@@ -327,9 +333,9 @@ func (nn *NeuralNetwork) LoadState(reader io.Reader) {
|
|
|
sizeBuffer := readByteArray(reader, nn.LayerCount*4)
|
|
|
nn.Sizes = make([]int, nn.LayerCount)
|
|
|
|
|
|
- for i := 0; i < nn.LayerCount; i++ {
|
|
|
- nn.Sizes[i] = int(binary.LittleEndian.Uint32(sizeBuffer[i*4:]))
|
|
|
- fmt.Printf("LoadState: nn.Sizes[%d] %d \n", i, nn.Sizes[i])
|
|
|
+ for l := 0; l < nn.LayerCount; l++ {
|
|
|
+ nn.Sizes[l] = int(binary.LittleEndian.Uint32(sizeBuffer[l*4:]))
|
|
|
+ fmt.Printf("LoadState: nn.Sizes[%d] %d \n", l, nn.Sizes[l])
|
|
|
}
|
|
|
|
|
|
nn.Weights = []*mat.Dense{&mat.Dense{}}
|
|
@@ -337,16 +343,22 @@ func (nn *NeuralNetwork) LoadState(reader io.Reader) {
|
|
|
|
|
|
// read Biases
|
|
|
nn.Biases[0] = &mat.Dense{}
|
|
|
- for i := 1; i < nn.LayerCount; i++ {
|
|
|
+ for l := 1; l < nn.LayerCount; l++ {
|
|
|
nn.Biases = append(nn.Biases, &mat.Dense{})
|
|
|
- nn.Biases[i] = readDense(reader, nn.Biases[i])
|
|
|
+ nn.Biases[l] = readDense(reader, nn.Biases[l])
|
|
|
}
|
|
|
|
|
|
- // read Weights
|
|
|
+ nn.BGradient = make([]interface{}, nn.LayerCount)
|
|
|
+ nn.WGradient = make([]interface{}, nn.LayerCount)
|
|
|
+ // read Weights and initialize gradient descents
|
|
|
nn.Weights[0] = &mat.Dense{}
|
|
|
- for i := 1; i < nn.LayerCount; i++ {
|
|
|
+ for l := 1; l < nn.LayerCount; l++ {
|
|
|
nn.Weights = append(nn.Weights, &mat.Dense{})
|
|
|
- nn.Weights[i] = readDense(reader, nn.Weights[i])
|
|
|
+ nn.Weights[l] = readDense(reader, nn.Weights[l])
|
|
|
+ if nn.gradientDescentInitializer != nil {
|
|
|
+ nn.BGradient[l] = nn.gradientDescentInitializer(nn, l, BiasGradient)
|
|
|
+ nn.WGradient[l] = nn.gradientDescentInitializer(nn, l, WeightGradient)
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
// fmt.Printf("\nLoadState end\n")
|