123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- /*
- * MIT License
- *
- * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>
- *
- * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy of this
- * software and associated documentation files (the "Software"), to deal in the Software
- * without restriction, including without limitation the rights to use, copy, modify,
- * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
- * to permit persons to whom the Software is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice shall be included in all copies
- * or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
- * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
- * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
- * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
- package main
- import (
- context "context"
- fmt "fmt"
- "log"
- "net"
- "sync"
- "time"
- "git.semlanik.org/semlanik/NeuralNetworkVisualization/visualization"
- neuralnetwork "git.semlanik.org/semlanik/NeuralNetwork/neuralnetwork"
- remotecontrol "git.semlanik.org/semlanik/NeuralNetwork/remotecontrol"
- "gonum.org/v1/gonum/mat"
- grpc "google.golang.org/grpc"
- training "git.semlanik.org/semlanik/NeuralNetwork/training"
- )
- type RemoteControl struct {
- nn *neuralnetwork.NeuralNetwork
- activationsQueue chan *remotecontrol.LayerMatrix
- biasesQueue chan *remotecontrol.LayerMatrix
- weightsQueue chan *remotecontrol.LayerMatrix
- stateQueue chan int
- mutex sync.Mutex
- config *remotecontrol.Configuration
- }
- func NewRemoteControl() (rw *RemoteControl) {
- rw = &RemoteControl{}
- rw.activationsQueue = make(chan *remotecontrol.LayerMatrix, 5)
- rw.biasesQueue = make(chan *remotecontrol.LayerMatrix, 5)
- rw.weightsQueue = make(chan *remotecontrol.LayerMatrix, 5)
- rw.stateQueue = make(chan int, 2)
- rw.config = &remotecontrol.Configuration{}
- return
- }
- func (rw *RemoteControl) Init(nn *neuralnetwork.NeuralNetwork) {
- rw.nn = nn
- for _, size := range rw.nn.Sizes {
- rw.config.Sizes = append(rw.config.Sizes, int32(size))
- }
- }
- func (rw *RemoteControl) UpdateActivations(l int, a *mat.Dense) {
- matrix := NewLayerMatrix(l, a, remotecontrol.LayerMatrix_Activations)
- select {
- case rw.activationsQueue <- matrix:
- default:
- }
- }
- func (rw *RemoteControl) UpdateBiases(l int, biases *mat.Dense) {
- matrix := NewLayerMatrix(l, biases, remotecontrol.LayerMatrix_Biases)
- select {
- case rw.biasesQueue <- matrix:
- default:
- }
- }
- func (rw *RemoteControl) UpdateWeights(l int, weights *mat.Dense) {
- matrix := NewLayerMatrix(l, weights, remotecontrol.LayerMatrix_Weights)
- select {
- case rw.weightsQueue <- matrix:
- default:
- }
- }
- func (rw *RemoteControl) UpdateState(state int) {
- select {
- case rw.stateQueue <- state:
- default:
- }
- }
- func NewLayerMatrix(l int, dense *mat.Dense, contentType remotecontrol.LayerMatrix_ContentType) (matrix *remotecontrol.LayerMatrix) {
- buffer, err := dense.MarshalBinary()
- if err != nil {
- log.Fatalln("Invalid dense is provided for remote control")
- }
- matrix = &remotecontrol.LayerMatrix{
- Matrix: &remotecontrol.Matrix{
- Matrix: buffer,
- },
- Layer: int32(l),
- ContentType: contentType,
- }
- return
- }
- func (rw *RemoteControl) GetConfiguration(context.Context, *remotecontrol.None) (*remotecontrol.Configuration, error) {
- return rw.config, nil
- }
- func (rw *RemoteControl) Activations(_ *remotecontrol.None, srv remotecontrol.RemoteControl_ActivationsServer) error {
- ctx := srv.Context()
- for {
- select {
- case <-ctx.Done():
- return ctx.Err()
- default:
- }
- msg := <-rw.activationsQueue
- srv.Send(msg)
- }
- }
- func (rw *RemoteControl) Biases(_ *remotecontrol.None, srv remotecontrol.RemoteControl_BiasesServer) error {
- ctx := srv.Context()
- for {
- select {
- case <-ctx.Done():
- return ctx.Err()
- default:
- }
- msg := <-rw.biasesQueue
- srv.Send(msg)
- }
- }
- func (rw *RemoteControl) Weights(_ *remotecontrol.None, srv remotecontrol.RemoteControl_WeightsServer) error {
- ctx := srv.Context()
- for {
- select {
- case <-ctx.Done():
- return ctx.Err()
- default:
- }
- msg := <-rw.weightsQueue
- srv.Send(msg)
- }
- }
- func (rw *RemoteControl) State(_ *remotecontrol.None, srv remotecontrol.RemoteControl_StateServer) error {
- ctx := srv.Context()
- for {
- select {
- case <-ctx.Done():
- return ctx.Err()
- default:
- }
- state := <-rw.stateQueue
- msg := &remotecontrol.NetworkState{
- State: remotecontrol.NetworkState_State(state),
- }
- srv.Send(msg)
- }
- }
- func (rw *RemoteControl) Run(context.Context, *visualization.None) (*visualization.None, error) {
- go func() {
- rw.mutex.Lock()
- defer rw.mutex.Unlock()
- // trainer := training.NewMNISTReader("./minst.data", "./mnist.labels")
- trainer := training.NewTextDataReader("wine.data", 5)
- rw.nn.Train(trainer, 500)
- // for i := 0; i < nn.Count; i++ {
- // if i > 0 {
- // fmt.Printf("Weights after:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0)))
- // fmt.Printf("Biases after:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0)))
- // fmt.Printf("Z after:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0)))
- // }
- // fmt.Printf("A after:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0)))
- // }
- rw.nn.SaveStateToFile("./neuralnetworkdata.nnd")
- rw.UpdateState(neuralnetwork.StateLearning)
- defer rw.UpdateState(neuralnetwork.StateIdle)
- failCount := 0
- for i := 0; i < trainer.ValidatorCount(); i++ {
- dataSet, expect := trainer.GetValidator(i)
- index, _ := rw.nn.Predict(dataSet)
- //TODO: remove this if not used for visualization
- time.Sleep(400 * time.Millisecond)
- if expect.At(index, 0) != 1.0 {
- failCount++
- // fmt.Printf("Fail: %v, %v\n\n", trainer.ValidationIndex(), expect.At(index, 0))
- }
- }
- fmt.Printf("Fail count: %v\n\n", failCount)
- failCount = 0
- rw.UpdateState(neuralnetwork.StateIdle)
- }()
- return &visualization.None{}, nil
- }
- func (rw *RemoteControl) RunServices() {
- go func() {
- grpcServer := grpc.NewServer()
- remotecontrol.RegisterRemoteControlServer(grpcServer, rw)
- lis, err := net.Listen("tcp", "localhost:65001")
- if err != nil {
- fmt.Printf("Failed to listen: %v\n", err)
- }
- fmt.Printf("Listen localhost:65001\n")
- if err := grpcServer.Serve(lis); err != nil {
- fmt.Printf("Failed to serve: %v\n", err)
- }
- }()
- grpcServer := grpc.NewServer()
- visualization.RegisterVisualizationServer(grpcServer, rw)
- lis, err := net.Listen("tcp", "localhost:65002")
- if err != nil {
- fmt.Printf("Failed to listen: %v\n", err)
- }
- fmt.Printf("Listen localhost:65002\n")
- if err := grpcServer.Serve(lis); err != nil {
- fmt.Printf("Failed to serve: %v\n", err)
- }
- }
- func (rw *RemoteControl) GetSubscriptionFeatures() (feature neuralnetwork.SubscriptionFeatures) {
- feature.Clear()
- feature.Set(neuralnetwork.ActivationsSubscription)
- feature.Set(neuralnetwork.BiasesSubscription)
- feature.Set(neuralnetwork.WeightsSubscription)
- feature.Set(neuralnetwork.StateSubscription)
- return
- }
- func (rw *RemoteControl) UpdateTraining(t int, epocs int, samplesProcced int, totalSamplesCount int) {
- log.Fatal("UpdateTraining training is not implemented but called")
- }
- func (rw *RemoteControl) UpdateValidation(validatorCount int, failCount int) {
- log.Fatal("UpdateValidation training is not implemented but called")
- }
|