123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- /*
- * MIT License
- *
- * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>
- *
- * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy of this
- * software and associated documentation files (the "Software"), to deal in the Software
- * without restriction, including without limitation the rights to use, copy, modify,
- * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
- * to permit persons to whom the Software is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice shall be included in all copies
- * or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
- * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
- * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
- * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
- #pragma once
- template <typename T>
- class AbstractDense {
- public:
- AbstractDense() = default;
- AbstractDense(int rows, int columns, const T &data) :
- m_rows(rows)
- , m_columns(columns)
- , m_data(data) {}
- void setDimentions(int rows, int columns) {
- m_rows = rows;
- m_columns = columns;
- }
- void setData(const T &data) {
- m_data = data;
- }
- int rows() const {
- return m_rows;
- }
- int columns() const {
- return m_columns;
- }
- template<typename R>
- R value(int row, int column) const {
- return m_data[(m_columns - 1) * row + column + row];
- }
- protected:
- int m_rows;
- int m_columns;
- T m_data;
- };
|