/* * MIT License * * Copyright (c) 2019 Alexey Edelev * * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * software and associated documentation files (the "Software"), to deal in the Software * without restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, and * to permit persons to whom the Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be included in all copies * or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ package main import ( context "context" fmt "fmt" "log" "net" "sync" "time" "./visualization" neuralnetwork "git.semlanik.org/semlanik/NeuralNetwork/neuralnetwork" remotecontrol "git.semlanik.org/semlanik/NeuralNetwork/remotecontrol" "gonum.org/v1/gonum/mat" grpc "google.golang.org/grpc" training "git.semlanik.org/semlanik/NeuralNetwork/training" ) type RemoteControl struct { nn *neuralnetwork.NeuralNetwork activationsQueue chan *remotecontrol.LayerMatrix biasesQueue chan *remotecontrol.LayerMatrix weightsQueue chan *remotecontrol.LayerMatrix stateQueue chan int mutex sync.Mutex config *remotecontrol.Configuration } func NewRemoteControl() (rw *RemoteControl) { rw = &RemoteControl{} rw.activationsQueue = make(chan *remotecontrol.LayerMatrix, 5) rw.biasesQueue = make(chan *remotecontrol.LayerMatrix, 5) rw.weightsQueue = make(chan *remotecontrol.LayerMatrix, 5) rw.stateQueue = make(chan int, 2) rw.config = &remotecontrol.Configuration{} return } func (rw *RemoteControl) Init(nn *neuralnetwork.NeuralNetwork) { rw.nn = nn for _, size := range rw.nn.Sizes { rw.config.Sizes = append(rw.config.Sizes, int32(size)) } } func (rw *RemoteControl) UpdateActivations(l int, a *mat.Dense) { matrix := NewLayerMatrix(l, a, remotecontrol.LayerMatrix_Activations) select { case rw.activationsQueue <- matrix: default: } } func (rw *RemoteControl) UpdateBiases(l int, biases *mat.Dense) { matrix := NewLayerMatrix(l, biases, remotecontrol.LayerMatrix_Biases) select { case rw.biasesQueue <- matrix: default: } } func (rw *RemoteControl) UpdateWeights(l int, weights *mat.Dense) { matrix := NewLayerMatrix(l, weights, remotecontrol.LayerMatrix_Weights) select { case rw.weightsQueue <- matrix: default: } } func (rw *RemoteControl) UpdateState(state int) { select { case rw.stateQueue <- state: default: } } func NewLayerMatrix(l int, dense *mat.Dense, contentType remotecontrol.LayerMatrix_ContentType) (matrix *remotecontrol.LayerMatrix) { buffer, err := dense.MarshalBinary() if err != nil { log.Fatalln("Invalid dense is provided for remote control") } matrix = &remotecontrol.LayerMatrix{ Matrix: &remotecontrol.Matrix{ Matrix: buffer, }, Layer: int32(l), ContentType: contentType, } return } func (rw *RemoteControl) GetConfiguration(context.Context, *remotecontrol.None) (*remotecontrol.Configuration, error) { return rw.config, nil } func (rw *RemoteControl) Activations(_ *remotecontrol.None, srv remotecontrol.RemoteControl_ActivationsServer) error { ctx := srv.Context() for { select { case <-ctx.Done(): return ctx.Err() default: } msg := <-rw.activationsQueue srv.Send(msg) } } func (rw *RemoteControl) Biases(_ *remotecontrol.None, srv remotecontrol.RemoteControl_BiasesServer) error { ctx := srv.Context() for { select { case <-ctx.Done(): return ctx.Err() default: } msg := <-rw.biasesQueue srv.Send(msg) } } func (rw *RemoteControl) Weights(_ *remotecontrol.None, srv remotecontrol.RemoteControl_WeightsServer) error { ctx := srv.Context() for { select { case <-ctx.Done(): return ctx.Err() default: } msg := <-rw.weightsQueue srv.Send(msg) } } func (rw *RemoteControl) State(_ *remotecontrol.None, srv remotecontrol.RemoteControl_StateServer) error { ctx := srv.Context() for { select { case <-ctx.Done(): return ctx.Err() default: } state := <-rw.stateQueue msg := &remotecontrol.NetworkState{ State: remotecontrol.NetworkState_State(state), } srv.Send(msg) } } func (rw *RemoteControl) Run(context.Context, *visualization.None) (*visualization.None, error) { go func() { rw.mutex.Lock() defer rw.mutex.Unlock() // trainer := training.NewMNISTReader("./minst.data", "./mnist.labels") trainer := training.NewTextDataReader("wine.data", 5) rw.nn.Train(trainer, 500) // for i := 0; i < nn.Count; i++ { // if i > 0 { // fmt.Printf("Weights after:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0))) // fmt.Printf("Biases after:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0))) // fmt.Printf("Z after:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0))) // } // fmt.Printf("A after:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0))) // } rw.nn.SaveStateToFile("./neuralnetworkdata.nnd") rw.UpdateState(neuralnetwork.StateLearning) defer rw.UpdateState(neuralnetwork.StateIdle) failCount := 0 for i := 0; i < trainer.ValidatorCount(); i++ { dataSet, expect := trainer.GetValidator(i) index, _ := rw.nn.Predict(dataSet) //TODO: remove this if not used for visualization time.Sleep(400 * time.Millisecond) if expect.At(index, 0) != 1.0 { failCount++ // fmt.Printf("Fail: %v, %v\n\n", trainer.ValidationIndex(), expect.At(index, 0)) } } fmt.Printf("Fail count: %v\n\n", failCount) failCount = 0 rw.UpdateState(neuralnetwork.StateIdle) }() return &visualization.None{}, nil } func (rw *RemoteControl) RunServices() { go func() { grpcServer := grpc.NewServer() remotecontrol.RegisterRemoteControlServer(grpcServer, rw) lis, err := net.Listen("tcp", "localhost:65001") if err != nil { fmt.Printf("Failed to listen: %v\n", err) } fmt.Printf("Listen localhost:65001\n") if err := grpcServer.Serve(lis); err != nil { fmt.Printf("Failed to serve: %v\n", err) } }() grpcServer := grpc.NewServer() visualization.RegisterVisualizationServer(grpcServer, rw) lis, err := net.Listen("tcp", "localhost:65002") if err != nil { fmt.Printf("Failed to listen: %v\n", err) } fmt.Printf("Listen localhost:65002\n") if err := grpcServer.Serve(lis); err != nil { fmt.Printf("Failed to serve: %v\n", err) } } func (rw *RemoteControl) GetSubscriptionFeatures() (feature neuralnetwork.SubscriptionFeatures) { feature.Clear() feature.Set(neuralnetwork.ActivationsSubscription) feature.Set(neuralnetwork.BiasesSubscription) feature.Set(neuralnetwork.WeightsSubscription) feature.Set(neuralnetwork.StateSubscription) return } func (rw *RemoteControl) UpdateTraining(t int, epocs int, samplesProcced int, totalSamplesCount int) { log.Fatal("UpdateTraining training is not implemented but called") } func (rw *RemoteControl) UpdateValidation(validatorCount int, failCount int) { log.Fatal("UpdateValidation training is not implemented but called") }