/* * MIT License * * Copyright (c) 2019 Alexey Edelev * * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * software and associated documentation files (the "Software"), to deal in the Software * without restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, and * to permit persons to whom the Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be included in all copies * or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "dense.h" #include //0 - 3 Version = 1 (uint32) //4 'G' (byte) //5 'F' (byte) //6 'A' (byte) //7 0 (byte) //8 - 15 number of rows (int64) //16 - 23 number of columns (int64) //24 - 31 0 (int64) //32 - 39 0 (int64) //40 - .. matrix data elements (float64) // [0,0] [0,1] ... [0,ncols-1] // [1,0] [1,1] ... [1,ncols-1] // ... // [nrows-1,0] ... [nrows-1,ncols-1] Dense::Dense(const QByteArray &data) : AbstractDense(*(int64_t *)(data.data() + 8), *(int64_t *)(data.data() + 16), data) { } double Dense::rawValue(int i) const { return *(double *)(m_data.data() + 40 + i * sizeof(double)); } template<> template<> double AbstractDense::value(int row, int column) const { const char *dataPtr = m_data.data() + 40 + ((m_columns - 1) * row + column + row) * sizeof(double); return *(double *)dataPtr; }