/* * MIT License * * Copyright (c) 2019 Alexey Edelev * * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * software and associated documentation files (the "Software"), to deal in the Software * without restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, and * to permit persons to whom the Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be included in all copies * or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ package main import ( "git.semlanik.org/semlanik/NeuralNetwork/neuralnetwork" "git.semlanik.org/semlanik/NeuralNetwork/neuralnetwork/gradients" "git.semlanik.org/semlanik/NeuralNetwork/remotecontrol" ) func main() { rc := remotecontrol.NewRemoteControl() sizes := []int{13, 8, 12, 3} nn, _ := neuralnetwork.NewNeuralNetwork(sizes, gradients.NewRPropInitializer(gradients.RPropConfig{ NuPlus: 1.2, NuMinus: 0.5, DeltaMax: 50.0, DeltaMin: 0.000001, })) nn.SetStateWatcher(rc) rc.Run() // inFile, err := os.Open("./networkstate") // if err != nil { // log.Fatal(err) // } // defer inFile.Close() // nn.LoadState(inFile) // nn, _ := neuralnetwork.NewNeuralNetwork(sizes, neuralnetwork.NewBackPropInitializer(0.1)) // for i := 0; i < nn.Count; i++ { // if i > 0 { // fmt.Printf("Weights before:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0))) // fmt.Printf("Biases before:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0))) // fmt.Printf("Z before:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0))) // } // fmt.Printf("A before:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0))) // } // nn = &neuralnetwork.NeuralNetwork{} // inFile, err := os.Open("./data") // if err != nil { // log.Fatal(err) // } // defer inFile.Close() // nn.LoadState(inFile) // inFile.Close() // failCount = 0 // training.Reset() // for training.NextValidator() { // dataSet, expect := training.GetValidator() // index, _ := nn.Predict(dataSet) // if expect.At(index, 0) != 1.0 { // failCount++ // // fmt.Printf("Fail: %v, %v\n\n", training.ValidationIndex(), expect.At(index, 0)) // } // } // fmt.Printf("Fail count: %v\n\n", failCount) }