mathcommon.go 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. /*
  2. * MIT License
  3. *
  4. * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>
  5. *
  6. * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy of this
  9. * software and associated documentation files (the "Software"), to deal in the Software
  10. * without restriction, including without limitation the rights to use, copy, modify,
  11. * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
  12. * to permit persons to whom the Software is furnished to do so, subject to the following
  13. * conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all copies
  16. * or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
  19. * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
  20. * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
  21. * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  22. * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  23. * DEALINGS IN THE SOFTWARE.
  24. */
  25. package neuralnetwork
  26. import (
  27. "math"
  28. rand "math/rand"
  29. "time"
  30. mat "gonum.org/v1/gonum/mat"
  31. )
  32. func generateRandomDense(rows, columns int) *mat.Dense {
  33. rand.Seed(time.Now().UnixNano())
  34. data := make([]float64, rows*columns)
  35. // min := -1.0
  36. // max := 1.0
  37. for i := range data {
  38. data[i] = rand.NormFloat64()
  39. // data[i] = min + rand.Float64()*(max-min)
  40. }
  41. return mat.NewDense(rows, columns, data)
  42. }
  43. func applySigmoid(_, _ int, x float64) float64 {
  44. return sigmoid(x)
  45. }
  46. func applySigmoidPrime(_, _ int, x float64) float64 {
  47. return sigmoidPrime(x)
  48. }
  49. func sigmoid(x float64) float64 {
  50. return 1.0 / (1.0 + math.Exp(-x))
  51. }
  52. func sigmoidPrime(x float64) float64 {
  53. sig := sigmoid(x)
  54. return sig * (1 - sig)
  55. }