123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- /*
- * MIT License
- *
- * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>
- *
- * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy of this
- * software and associated documentation files (the "Software"), to deal in the Software
- * without restriction, including without limitation the rights to use, copy, modify,
- * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
- * to permit persons to whom the Software is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice shall be included in all copies
- * or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
- * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
- * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
- * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
- package neuralnetwork
- import (
- "math"
- rand "math/rand"
- "time"
- mat "gonum.org/v1/gonum/mat"
- )
- func generateRandomDense(rows, columns int) *mat.Dense {
- rand.Seed(time.Now().UnixNano())
- data := make([]float64, rows*columns)
- // min := -1.0
- // max := 1.0
- for i := range data {
- data[i] = rand.NormFloat64()
- // data[i] = min + rand.Float64()*(max-min)
- }
- return mat.NewDense(rows, columns, data)
- }
- func applySigmoid(_, _ int, x float64) float64 {
- return sigmoid(x)
- }
- func applySigmoidPrime(_, _ int, x float64) float64 {
- return sigmoidPrime(x)
- }
- func sigmoid(x float64) float64 {
- return 1.0 / (1.0 + math.Exp(-x))
- }
- func sigmoidPrime(x float64) float64 {
- sig := sigmoid(x)
- return sig * (1 - sig)
- }
|