localbatchworker.go 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. /*
  2. * MIT License
  3. *
  4. * Copyright (c) 2020 Alexey Edelev <semlanik@gmail.com>
  5. *
  6. * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy of this
  9. * software and associated documentation files (the "Software"), to deal in the Software
  10. * without restriction, including without limitation the rights to use, copy, modify,
  11. * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
  12. * to permit persons to whom the Software is furnished to do so, subject to the following
  13. * conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all copies
  16. * or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
  19. * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
  20. * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
  21. * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  22. * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  23. * DEALINGS IN THE SOFTWARE.
  24. */
  25. package neuralnetwork
  26. import (
  27. "runtime"
  28. training "git.semlanik.org/semlanik/NeuralNetwork/training"
  29. mat "gonum.org/v1/gonum/mat"
  30. )
  31. type localBatchWorkerFactory struct {
  32. network *NeuralNetwork
  33. }
  34. type localBatchWorker struct {
  35. network *NeuralNetwork
  36. BGradient []BatchGradientDescent
  37. WGradient []BatchGradientDescent
  38. batchSize int
  39. }
  40. func NewLocalBatchWorkerFactory(network *NeuralNetwork) BatchWorkerFactory {
  41. factory := &localBatchWorkerFactory{
  42. network: network,
  43. }
  44. return factory
  45. }
  46. func newLocalBatchWorker(nn *NeuralNetwork) (bw *localBatchWorker) {
  47. bw = &localBatchWorker{
  48. network: nn,
  49. BGradient: make([]BatchGradientDescent, nn.LayerCount),
  50. WGradient: make([]BatchGradientDescent, nn.LayerCount),
  51. }
  52. for l := 1; l < nn.LayerCount; l++ {
  53. bw.BGradient[l] = nn.gradientDescentInitializer(nn, l, BiasGradient).(BatchGradientDescent)
  54. bw.WGradient[l] = nn.gradientDescentInitializer(nn, l, WeightGradient).(BatchGradientDescent)
  55. }
  56. return
  57. }
  58. func (bw *localBatchWorker) Run(trainer training.Trainer, startIndex, endIndex int) {
  59. bw.batchSize = 0
  60. for i := startIndex; i < endIndex; i++ {
  61. bw.batchSize++
  62. dB, dW := bw.network.backward(trainer.GetData(i))
  63. for l := 1; l < bw.network.LayerCount; l++ {
  64. bw.BGradient[l].AccumGradients(dB[l], 1)
  65. bw.WGradient[l].AccumGradients(dW[l], 1)
  66. }
  67. }
  68. }
  69. func (bw *localBatchWorker) Result(layer int) (dB, dW *mat.Dense, batchSize int) {
  70. return bw.BGradient[layer].Gradients(), bw.WGradient[layer].Gradients(), bw.batchSize
  71. }
  72. func (lbwf localBatchWorkerFactory) GetBatchWorker() BatchWorker {
  73. return newLocalBatchWorker(lbwf.network)
  74. }
  75. func (lbwf localBatchWorkerFactory) GetAvailableThreads() int {
  76. return runtime.NumCPU()
  77. }