1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- /*
- * MIT License
- *
- * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>
- *
- * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy of this
- * software and associated documentation files (the "Software"), to deal in the Software
- * without restriction, including without limitation the rights to use, copy, modify,
- * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
- * to permit persons to whom the Software is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice shall be included in all copies
- * or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
- * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
- * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
- * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
- package neuralnetwork
- import (
- training "git.semlanik.org/semlanik/NeuralNetwork/training"
- mat "gonum.org/v1/gonum/mat"
- )
- const (
- StateIdle = 1
- StateLearning = 2
- StateValidation = 3
- StatePredict = 4
- )
- type SubscriptionFeatures uint8
- const (
- ActivationsSubscription SubscriptionFeatures = 1 << iota
- BiasesSubscription
- WeightsSubscription
- TrainingSubscription
- ValidationSubscription
- StateSubscription
- AllSubscription = 0xFF
- )
- type StateWatcher interface {
- Init(nn *NeuralNetwork)
- UpdateState(state int)
- UpdateActivations(l int, a *mat.Dense)
- UpdateBiases(l int, biases *mat.Dense)
- UpdateWeights(l int, weights *mat.Dense)
- UpdateTraining(t int, epocs int, samplesProcced int, totalSamplesCount int)
- UpdateValidation(validatorCount int, failCount int)
- GetSubscriptionFeatures() SubscriptionFeatures
- }
- func (f SubscriptionFeatures) Has(flag SubscriptionFeatures) bool {
- return f&flag != 0
- }
- func (f *SubscriptionFeatures) Set(flag SubscriptionFeatures) {
- *f |= flag
- }
- func (f *SubscriptionFeatures) Unset(flag SubscriptionFeatures) {
- *f &= (^flag)
- }
- func (f *SubscriptionFeatures) Clear() {
- *f = 0
- }
- type BatchWorker interface {
- Run(trainer training.Trainer, startIndex, endIndex int)
- Result(layer int) (dB, dW *mat.Dense, batchSize int)
- }
- type BatchWorkerFactory interface {
- GetBatchWorker() BatchWorker
- GetAvailableThreads() int
- }
- type EarlyStop interface {
- Test() bool
- Reset()
- }
|