1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- /*
- * MIT License
- *
- * Copyright (c) 2020 Alexey Edelev <semlanik@gmail.com>
- *
- * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy of this
- * software and associated documentation files (the "Software"), to deal in the Software
- * without restriction, including without limitation the rights to use, copy, modify,
- * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
- * to permit persons to whom the Software is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice shall be included in all copies
- * or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
- * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
- * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
- * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
- package earlystop
- import (
- "log"
- "math"
- "os"
- neuralnetwork "git.semlanik.org/semlanik/NeuralNetwork/neuralnetwork"
- training "git.semlanik.org/semlanik/NeuralNetwork/training"
- )
- const tmpFileName = "./.simpleDescentEarlyStop.nnd.tmp"
- type simpleDescentEarlyStop struct {
- lastFailRate float64
- bestFailRate float64
- failRateDeltaSum float64
- network *neuralnetwork.NeuralNetwork
- trainer training.Trainer
- glGrowCount int
- }
- func NewSimpleDescentEarlyStop(network *neuralnetwork.NeuralNetwork, trainer training.Trainer) (es *simpleDescentEarlyStop) {
- es = nil
- if network == nil || trainer == nil {
- return
- }
- es = &simpleDescentEarlyStop{
- lastFailRate: math.MaxFloat64,
- bestFailRate: math.MaxFloat64,
- failRateDeltaSum: 0.0,
- network: network,
- trainer: trainer,
- glGrowCount: 0,
- }
- return
- }
- func (es *simpleDescentEarlyStop) Test() bool {
- squareError, fails, total := es.network.Validate(es.trainer)
- es.lastFailRate = squareError / float64(total)
- log.Printf("Fail count: %v/%v, lastFailRate: %v\n", fails, total, es.lastFailRate)
- generalizationLoss := (es.lastFailRate/es.bestFailRate - 1.0)
- if es.bestFailRate > es.lastFailRate {
- es.bestFailRate = es.lastFailRate
- es.network.SaveStateToFile(tmpFileName)
- }
- if generalizationLoss > 0.0 {
- es.glGrowCount++
- } else {
- es.glGrowCount = 0
- }
- if es.glGrowCount > 5 {
- es.network.LoadStateFromFile(tmpFileName)
- os.Remove(tmpFileName)
- return true
- }
- return false
- }
- func (es *simpleDescentEarlyStop) Reset() {
- es.lastFailRate = math.MaxFloat64
- es.bestFailRate = math.MaxFloat64
- es.glGrowCount = 0
- es.failRateDeltaSum = 0.0
- }
|