neuralnetwork.go 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. package neuralnetworkbase
  2. import (
  3. mat "gonum.org/v1/gonum/mat"
  4. )
  5. type NeuralNetwork struct {
  6. Count int
  7. Sizes []int
  8. Biases []*mat.Dense
  9. Weights []*mat.Dense
  10. A []*mat.Dense
  11. Z []*mat.Dense
  12. alpha float64
  13. trainingCycles int
  14. }
  15. func NewNeuralNetwork(Sizes []int, nu float64, trainingCycles int) (nn *NeuralNetwork) {
  16. nn = &NeuralNetwork{}
  17. nn.Sizes = Sizes
  18. nn.Count = len(Sizes)
  19. nn.Weights = make([]*mat.Dense, nn.Count)
  20. nn.Biases = make([]*mat.Dense, nn.Count)
  21. nn.A = make([]*mat.Dense, nn.Count)
  22. nn.Z = make([]*mat.Dense, nn.Count)
  23. nn.alpha = nu / float64(nn.Sizes[0])
  24. nn.trainingCycles = trainingCycles
  25. for i := 1; i < nn.Count; i++ {
  26. nn.Weights[i] = generateRandomDense(nn.Sizes[i], nn.Sizes[i-1])
  27. nn.Biases[i] = generateRandomDense(nn.Sizes[i], 1)
  28. }
  29. return
  30. }
  31. func (nn *NeuralNetwork) Predict(aIn mat.Matrix) (maxIndex int, max float64) {
  32. nn.forward(aIn)
  33. result := nn.result()
  34. r, _ := result.Dims()
  35. max = 0.0
  36. maxIndex = 0
  37. for i := 0; i < r; i++ {
  38. if result.At(i, 0) > max {
  39. max = result.At(i, 0)
  40. maxIndex = i
  41. }
  42. }
  43. return
  44. }
  45. func (nn *NeuralNetwork) Train(dataSet, expect []*mat.Dense) {
  46. dataSetSize := len(dataSet)
  47. for i := 0; i < nn.trainingCycles; i++ {
  48. for j := dataSetSize - 1; j >= 0; j -= 3 {
  49. if j < 0 {
  50. j = 0
  51. }
  52. nn.backward(dataSet[j], expect[j])
  53. }
  54. }
  55. }
  56. func (nn *NeuralNetwork) SaveState(filename string) {
  57. }
  58. func (nn *NeuralNetwork) LoadState(filename string) {
  59. }
  60. func (nn *NeuralNetwork) forward(aIn mat.Matrix) {
  61. nn.A[0] = mat.DenseCopyOf(aIn)
  62. for i := 1; i < nn.Count; i++ {
  63. nn.A[i] = mat.NewDense(nn.Sizes[i], 1, nil)
  64. aSrc := nn.A[i-1]
  65. aDst := nn.A[i]
  66. // r, c := nn.Weights[i].Dims()
  67. // fmt.Printf("r: %v,c: %v\n", r, c)
  68. // r, c = aSrc.Dims()
  69. // fmt.Printf("src r: %v,c: %v\n\n\n", r, c)
  70. aDst.Mul(nn.Weights[i], aSrc)
  71. aDst.Add(aDst, nn.Biases[i])
  72. nn.Z[i] = mat.DenseCopyOf(aDst)
  73. aDst.Apply(applySigmoid, aDst)
  74. }
  75. }
  76. func (nn *NeuralNetwork) backward(aIn, aOut mat.Matrix) {
  77. nn.forward(aIn)
  78. lastLayerNum := nn.Count - 1
  79. //Initial error
  80. err := &mat.Dense{}
  81. err.Sub(nn.result(), aOut)
  82. sigmoidsPrime := &mat.Dense{}
  83. sigmoidsPrime.Apply(applySigmoidPrime, nn.Z[lastLayerNum])
  84. delta := &mat.Dense{}
  85. delta.MulElem(err, sigmoidsPrime)
  86. biases := mat.DenseCopyOf(delta)
  87. weights := &mat.Dense{}
  88. weights.Mul(delta, nn.A[lastLayerNum-1].T())
  89. newBiases := []*mat.Dense{makeBackGradien(biases, nn.Biases[lastLayerNum], nn.alpha)}
  90. newWeights := []*mat.Dense{makeBackGradien(weights, nn.Weights[lastLayerNum], nn.alpha)}
  91. err = delta
  92. for i := nn.Count - 2; i > 0; i-- {
  93. sigmoidsPrime := &mat.Dense{}
  94. sigmoidsPrime.Apply(applySigmoidPrime, nn.Z[i])
  95. delta := &mat.Dense{}
  96. wdelta := &mat.Dense{}
  97. wdelta.Mul(nn.Weights[i+1].T(), err)
  98. delta.MulElem(wdelta, sigmoidsPrime)
  99. err = delta
  100. biases := mat.DenseCopyOf(delta)
  101. weights := &mat.Dense{}
  102. weights.Mul(delta, nn.A[i-1].T())
  103. // Scale down
  104. newBiases = append([]*mat.Dense{makeBackGradien(biases, nn.Biases[i], nn.alpha)}, newBiases...)
  105. newWeights = append([]*mat.Dense{makeBackGradien(weights, nn.Weights[i], nn.alpha)}, newWeights...)
  106. }
  107. newBiases = append([]*mat.Dense{&mat.Dense{}}, newBiases...)
  108. newWeights = append([]*mat.Dense{&mat.Dense{}}, newWeights...)
  109. nn.Biases = newBiases
  110. nn.Weights = newWeights
  111. }
  112. func (nn *NeuralNetwork) result() *mat.Dense {
  113. return nn.A[nn.Count-1]
  114. }