123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- package neuralnetworkbase
- import (
- mat "gonum.org/v1/gonum/mat"
- )
- type NeuralNetwork struct {
- Count int
- Sizes []int
- Biases []*mat.Dense
- Weights []*mat.Dense
- A []*mat.Dense
- Z []*mat.Dense
- alpha float64
- trainingCycles int
- }
- func NewNeuralNetwork(Sizes []int, nu float64, trainingCycles int) (nn *NeuralNetwork) {
- nn = &NeuralNetwork{}
- nn.Sizes = Sizes
- nn.Count = len(Sizes)
- nn.Weights = make([]*mat.Dense, nn.Count)
- nn.Biases = make([]*mat.Dense, nn.Count)
- nn.A = make([]*mat.Dense, nn.Count)
- nn.Z = make([]*mat.Dense, nn.Count)
- nn.alpha = nu / float64(nn.Sizes[0])
- nn.trainingCycles = trainingCycles
- for i := 1; i < nn.Count; i++ {
- nn.Weights[i] = generateRandomDense(nn.Sizes[i], nn.Sizes[i-1])
- nn.Biases[i] = generateRandomDense(nn.Sizes[i], 1)
- }
- return
- }
- func (nn *NeuralNetwork) Predict(aIn mat.Matrix) (maxIndex int, max float64) {
- nn.forward(aIn)
- result := nn.result()
- r, _ := result.Dims()
- max = 0.0
- maxIndex = 0
- for i := 0; i < r; i++ {
- if result.At(i, 0) > max {
- max = result.At(i, 0)
- maxIndex = i
- }
- }
- return
- }
- func (nn *NeuralNetwork) Train(dataSet, expect []*mat.Dense) {
- dataSetSize := len(dataSet)
- for i := 0; i < nn.trainingCycles; i++ {
- for j := dataSetSize - 1; j >= 0; j -= 3 {
- if j < 0 {
- j = 0
- }
- nn.backward(dataSet[j], expect[j])
- }
- }
- }
- func (nn *NeuralNetwork) SaveState(filename string) {
- }
- func (nn *NeuralNetwork) LoadState(filename string) {
- }
- func (nn *NeuralNetwork) forward(aIn mat.Matrix) {
- nn.A[0] = mat.DenseCopyOf(aIn)
- for i := 1; i < nn.Count; i++ {
- nn.A[i] = mat.NewDense(nn.Sizes[i], 1, nil)
- aSrc := nn.A[i-1]
- aDst := nn.A[i]
- // r, c := nn.Weights[i].Dims()
- // fmt.Printf("r: %v,c: %v\n", r, c)
- // r, c = aSrc.Dims()
- // fmt.Printf("src r: %v,c: %v\n\n\n", r, c)
- aDst.Mul(nn.Weights[i], aSrc)
- aDst.Add(aDst, nn.Biases[i])
- nn.Z[i] = mat.DenseCopyOf(aDst)
- aDst.Apply(applySigmoid, aDst)
- }
- }
- func (nn *NeuralNetwork) backward(aIn, aOut mat.Matrix) {
- nn.forward(aIn)
- lastLayerNum := nn.Count - 1
- //Initial error
- err := &mat.Dense{}
- err.Sub(nn.result(), aOut)
- sigmoidsPrime := &mat.Dense{}
- sigmoidsPrime.Apply(applySigmoidPrime, nn.Z[lastLayerNum])
- delta := &mat.Dense{}
- delta.MulElem(err, sigmoidsPrime)
- biases := mat.DenseCopyOf(delta)
- weights := &mat.Dense{}
- weights.Mul(delta, nn.A[lastLayerNum-1].T())
- newBiases := []*mat.Dense{makeBackGradien(biases, nn.Biases[lastLayerNum], nn.alpha)}
- newWeights := []*mat.Dense{makeBackGradien(weights, nn.Weights[lastLayerNum], nn.alpha)}
- err = delta
- for i := nn.Count - 2; i > 0; i-- {
- sigmoidsPrime := &mat.Dense{}
- sigmoidsPrime.Apply(applySigmoidPrime, nn.Z[i])
- delta := &mat.Dense{}
- wdelta := &mat.Dense{}
- wdelta.Mul(nn.Weights[i+1].T(), err)
- delta.MulElem(wdelta, sigmoidsPrime)
- err = delta
- biases := mat.DenseCopyOf(delta)
- weights := &mat.Dense{}
- weights.Mul(delta, nn.A[i-1].T())
- // Scale down
- newBiases = append([]*mat.Dense{makeBackGradien(biases, nn.Biases[i], nn.alpha)}, newBiases...)
- newWeights = append([]*mat.Dense{makeBackGradien(weights, nn.Weights[i], nn.alpha)}, newWeights...)
- }
- newBiases = append([]*mat.Dense{&mat.Dense{}}, newBiases...)
- newWeights = append([]*mat.Dense{&mat.Dense{}}, newWeights...)
- nn.Biases = newBiases
- nn.Weights = newWeights
- }
- func (nn *NeuralNetwork) result() *mat.Dense {
- return nn.A[nn.Count-1]
- }
|