123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- package training
- import (
- "encoding/binary"
- "fmt"
- "io"
- "log"
- "os"
- mat "gonum.org/v1/gonum/mat"
- )
- type MNISTReader struct {
- file *os.File
- resultsFile *os.File
- fileValidation *os.File
- resultsFileValidation *os.File
- size int
- imageSize int
- buffered *mat.Dense
- resultsBuffered *mat.Dense
- bufferedValidation *mat.Dense
- resultsBufferedValidation *mat.Dense
- }
- func NewMNISTReader(dataFilename string, resultsFilename string) (r *MNISTReader) {
- r = &MNISTReader{}
- var err error
- r.file, err = os.Open(dataFilename)
- if err != nil {
- return nil
- }
- r.resultsFile, err = os.Open(resultsFilename)
- if err != nil {
- return nil
- }
- buffer := make([]byte, 16)
- r.file.Read(buffer)
- header := binary.BigEndian.Uint32(buffer[:4])
- if header != 0x00000803 {
- return nil
- }
- r.size = int(binary.BigEndian.Uint32(buffer[4:8]))
- r.imageSize = int(binary.BigEndian.Uint32(buffer[8:12])) * int(binary.BigEndian.Uint32(buffer[12:16]))
- fmt.Printf("Image size: %v\n", r.imageSize)
- buffer = make([]byte, 8)
- r.resultsFile.Read(buffer)
- header = binary.BigEndian.Uint32(buffer[0:4])
- if header != 0x00000801 {
- return nil
- }
- resultsSize := int(binary.BigEndian.Uint32(buffer[4:8]))
- if resultsSize != r.size {
- return nil
- }
-
- r.fileValidation, err = os.Open(dataFilename)
- if err != nil {
- return nil
- }
- r.resultsFileValidation, err = os.Open(resultsFilename)
- if err != nil {
- return nil
- }
- r.Reset()
- return
- }
- func (r *MNISTReader) GetData() (*mat.Dense, *mat.Dense) {
- return r.buffered, r.resultsBuffered
- }
- func (r *MNISTReader) NextData() bool {
- r.buffered, r.resultsBuffered = r.readNextData(r.fileValidation, r.resultsFileValidation)
- if r.buffered != nil && r.resultsBuffered != nil {
- return true
- }
- r.Reset()
- return false
- }
- func (r *MNISTReader) Reset() {
- r.file.Seek(16, 0)
- r.resultsFile.Seek(8, 0)
- r.fileValidation.Seek(16, 0)
- r.resultsFileValidation.Seek(8, 0)
- }
- func (r *MNISTReader) GetValidator() (*mat.Dense, *mat.Dense) {
- return r.bufferedValidation, r.resultsBufferedValidation
- }
- func (r *MNISTReader) NextValidator() bool {
- r.bufferedValidation, r.resultsBufferedValidation = r.readNextData(r.fileValidation, r.resultsFileValidation)
- if r.bufferedValidation != nil && r.resultsBufferedValidation != nil {
- return true
- }
- r.Reset()
- return false
- }
- func (r *MNISTReader) readNextData(file *os.File, resultsFile *os.File) (buffered, resultsBuffered *mat.Dense) {
- buffer := make([]byte, r.imageSize)
- _, err := file.Read(buffer)
- if err == io.EOF {
- return nil, nil
- } else if err != nil {
- log.Fatal("File read error\n")
- }
- values := make([]float64, r.imageSize)
- for i, v := range buffer {
- values[i] = float64(v) / 255.0
- }
- buffered = mat.NewDense(r.imageSize, 1, values)
- buffer = make([]byte, 1)
- _, err = resultsFile.Read(buffer)
- if err != nil {
- log.Fatal("Result file read error\n")
- }
- num := int(buffer[0])
- resultsBuffered = mat.NewDense(10, 1, nil)
- resultsBuffered.Set(num, 0, 1.0)
- return buffered, resultsBuffered
- }
- func (r *MNISTReader) GetDataByIndex(i int) (*mat.Dense, *mat.Dense) {
- file, err := os.Open(r.file.Name())
- if err != nil {
- return nil, nil
- }
- defer file.Close()
- resultsFile, err := os.Open(r.resultsFile.Name())
- if err != nil {
- return nil, nil
- }
- defer resultsFile.Close()
- file.Seek(16+int64(r.imageSize*i), 0)
- resultsFile.Seek(8+int64(i), 0)
- return r.readNextData(file, resultsFile)
- }
- func (r *MNISTReader) GetDataCount() int {
- return r.size
- }
|