neuralnetwork.go 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435
  1. /*
  2. * MIT License
  3. *
  4. * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>, Tatyana Borisova <tanusshhka@mail.ru>
  5. *
  6. * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy of this
  9. * software and associated documentation files (the "Software"), to deal in the Software
  10. * without restriction, including without limitation the rights to use, copy, modify,
  11. * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
  12. * to permit persons to whom the Software is furnished to do so, subject to the following
  13. * conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all copies
  16. * or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
  19. * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
  20. * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
  21. * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  22. * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  23. * DEALINGS IN THE SOFTWARE.
  24. */
  25. package neuralnetworkbase
  26. import (
  27. "encoding/binary"
  28. "errors"
  29. "fmt"
  30. "io"
  31. "runtime"
  32. "sync"
  33. teach "../teach"
  34. mat "gonum.org/v1/gonum/mat"
  35. )
  36. // NeuralNetwork is simple neural network implementation
  37. //
  38. // Resources:
  39. // http://neuralnetworksanddeeplearning.com
  40. // https://www.youtube.com/watch?v=fNk_zzaMoSs
  41. // http://www.inf.fu-berlin.de/lehre/WS06/Musterererkennung/Paper/rprop.pdf
  42. //
  43. // Matrix: A
  44. // Description: A is set of calculated neuron activations after sigmoid correction
  45. // Format: 0 l L
  46. // ⎡A[0] ⎤ ... ⎡A[0] ⎤ ... ⎡A[0] ⎤
  47. // ⎢A[1] ⎥ ... ⎢A[1] ⎥ ... ⎢A[1] ⎥
  48. // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
  49. // ⎢A[i] ⎥ ... ⎢A[i] ⎥ ... ⎢A[i] ⎥
  50. // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
  51. // ⎣A[s] ⎦ ... ⎣A[s] ⎦ ... ⎣A[s] ⎦
  52. // Where s = Sizes[l] - Neural network layer size
  53. // L = len(Sizes) - Number of neural network layers
  54. //
  55. // Matrix: Z
  56. // Description: Z is set of calculated raw neuron activations
  57. // Format: 0 l L
  58. // ⎡Z[0] ⎤ ... ⎡Z[0] ⎤ ... ⎡Z[0] ⎤
  59. // ⎢Z[1] ⎥ ... ⎢Z[1] ⎥ ... ⎢Z[1] ⎥
  60. // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
  61. // ⎢Z[i] ⎥ ... ⎢Z[i] ⎥ ... ⎢Z[i] ⎥
  62. // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
  63. // ⎣Z[s] ⎦ ... ⎣Z[s] ⎦ ... ⎣Z[s] ⎦
  64. // Where s = Sizes[l] - Neural network layer size
  65. // L = len(Sizes) - Number of neural network layers
  66. //
  67. // Matrix: Biases
  68. // Description: Biases is set of biases per layer except l0
  69. // NOTE: l0 is always empty Dense because first layer
  70. // doesn't have connections to previous layer
  71. // Format: 1 l L
  72. // ⎡b[0] ⎤ ... ⎡b[0] ⎤ ... ⎡b[0] ⎤
  73. // ⎢b[1] ⎥ ... ⎢b[1] ⎥ ... ⎢b[1] ⎥
  74. // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
  75. // ⎢b[i] ⎥ ... ⎢b[i] ⎥ ... ⎢b[i] ⎥
  76. // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
  77. // ⎣b[s] ⎦ ... ⎣b[s] ⎦ ... ⎣b[s] ⎦
  78. // Where s = Sizes[l] - Neural network layer size
  79. // L = len(Sizes) - Number of neural network layers
  80. //
  81. // Matrix: Weights
  82. // Description: Weights is set of weights per layer except l0
  83. // NOTE: l0 is always empty Dense because first layer
  84. // doesn't have connections to previous layer
  85. // Format: 1 l L
  86. // ⎡w[0,0] ... w[0,j] ... w[0,s']⎤ ... ⎡w[0,0] ... w[0,j] ... w[0,s']⎤ ... ⎡w[0,0] ... w[0,j] ... w[0,s']⎤
  87. // ⎢w[1,0] ... w[1,j] ... w[1,s']⎥ ... ⎢w[1,0] ... w[1,j] ... w[1,s']⎥ ... ⎢w[1,0] ... w[1,j] ... w[1,s']⎥
  88. // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
  89. // ⎢w[i,0] ... w[i,j] ... w[i,s']⎥ ... ⎢w[i,0] ... w[i,j] ... w[i,s']⎥ ... ⎢w[i,0] ... w[i,j] ... w[i,s']⎥
  90. // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
  91. // ⎣w[s,0] ... w[s,j] ... w[s,s']⎦ ... ⎣w[s,0] ... w[s,j] ... w[s,s']⎦ ... ⎣w[s,0] ... w[s,j] ... w[s,s']⎦
  92. // Where s = Sizes[l] - Neural network layer size
  93. // s' = Sizes[l-1] - Previous neural network layer size
  94. // L = len(Sizes) - Number of neural network layers
  95. type NeuralNetwork struct {
  96. LayerCount int
  97. Sizes []int
  98. Biases []*mat.Dense
  99. Weights []*mat.Dense
  100. BGradient []interface{}
  101. WGradient []interface{}
  102. gradientDescentInitializer GradientDescentInitializer
  103. }
  104. func NewNeuralNetwork(sizes []int, gradientDescentInitializer GradientDescentInitializer) (nn *NeuralNetwork, err error) {
  105. err = nil
  106. if len(sizes) < 3 {
  107. fmt.Printf("Invalid network configuration: %v\n", sizes)
  108. return nil, errors.New("Invalid network configuration: %v\n")
  109. }
  110. for i := 0; i < len(sizes); i++ {
  111. if sizes[i] < 2 {
  112. fmt.Printf("Invalid network configuration: %v\n", sizes)
  113. return nil, errors.New("Invalid network configuration: %v\n")
  114. }
  115. }
  116. nn = &NeuralNetwork{}
  117. nn.Sizes = sizes
  118. nn.LayerCount = len(sizes)
  119. nn.Biases = make([]*mat.Dense, nn.LayerCount)
  120. nn.Weights = make([]*mat.Dense, nn.LayerCount)
  121. nn.BGradient = make([]interface{}, nn.LayerCount)
  122. nn.WGradient = make([]interface{}, nn.LayerCount)
  123. nn.gradientDescentInitializer = gradientDescentInitializer
  124. for l := 1; l < nn.LayerCount; l++ {
  125. nn.Biases[l] = generateRandomDense(nn.Sizes[l], 1)
  126. nn.Weights[l] = generateRandomDense(nn.Sizes[l], nn.Sizes[l-1])
  127. nn.BGradient[l] = nn.gradientDescentInitializer(nn, l, BiasGradient)
  128. nn.WGradient[l] = nn.gradientDescentInitializer(nn, l, WeightGradient)
  129. }
  130. return
  131. }
  132. func (nn *NeuralNetwork) Predict(aIn mat.Matrix) (maxIndex int, max float64) {
  133. r, _ := aIn.Dims()
  134. if r != nn.Sizes[0] {
  135. fmt.Printf("Invalid rows number of input matrix size: %v\n", r)
  136. return -1, 0.0
  137. }
  138. A, _ := nn.forward(aIn)
  139. result := A[nn.LayerCount-1]
  140. r, _ = result.Dims()
  141. max = 0.0
  142. maxIndex = 0
  143. for i := 0; i < r; i++ {
  144. if result.At(i, 0) > max {
  145. max = result.At(i, 0)
  146. maxIndex = i
  147. }
  148. }
  149. return
  150. }
  151. func (nn *NeuralNetwork) Teach(teacher teach.Teacher, epocs int) {
  152. if _, ok := nn.WGradient[nn.LayerCount-1].(OnlineGradientDescent); ok {
  153. nn.TeachOnline(teacher, epocs)
  154. } else if _, ok := nn.WGradient[nn.LayerCount-1].(BatchGradientDescent); ok {
  155. nn.TeachBatch(teacher, epocs)
  156. } else {
  157. panic("Invalid gradient descent type")
  158. }
  159. }
  160. func (nn *NeuralNetwork) TeachOnline(teacher teach.Teacher, epocs int) {
  161. for t := 0; t < epocs; t++ {
  162. for teacher.NextData() {
  163. dB, dW := nn.backward(teacher.GetData())
  164. for l := 1; l < nn.LayerCount; l++ {
  165. bGradient, ok := nn.BGradient[l].(OnlineGradientDescent)
  166. if !ok {
  167. panic("bGradient is not a OnlineGradientDescent")
  168. }
  169. wGradient, ok := nn.WGradient[l].(OnlineGradientDescent)
  170. if !ok {
  171. panic("wGradient is not a OnlineGradientDescent")
  172. }
  173. nn.Biases[l] = bGradient.ApplyDelta(nn.Biases[l], dB[l])
  174. nn.Weights[l] = wGradient.ApplyDelta(nn.Weights[l], dW[l])
  175. }
  176. }
  177. teacher.Reset()
  178. }
  179. }
  180. func (nn *NeuralNetwork) TeachBatch(teacher teach.Teacher, epocs int) {
  181. for t := 0; t < epocs; t++ {
  182. batchWorkers := nn.runBatchWorkers(runtime.NumCPU(), teacher)
  183. for l := 1; l < nn.LayerCount; l++ {
  184. bGradient, ok := nn.BGradient[l].(BatchGradientDescent)
  185. if !ok {
  186. panic("bGradient is not a BatchGradientDescent")
  187. }
  188. wGradient, ok := nn.WGradient[l].(BatchGradientDescent)
  189. if !ok {
  190. panic("wGradient is not a BatchGradientDescent")
  191. }
  192. for _, bw := range batchWorkers {
  193. dB, dW := bw.Result(l)
  194. bGradient.AccumGradients(dB)
  195. wGradient.AccumGradients(dW)
  196. }
  197. nn.Biases[l] = bGradient.ApplyDelta(nn.Biases[l])
  198. nn.Weights[l] = wGradient.ApplyDelta(nn.Weights[l])
  199. }
  200. }
  201. }
  202. func (nn *NeuralNetwork) runBatchWorkers(threadCount int, teacher teach.Teacher) (workers []*batchWorker) {
  203. wg := sync.WaitGroup{}
  204. chunkSize := teacher.GetDataCount() / threadCount
  205. workers = make([]*batchWorker, threadCount)
  206. for i, _ := range workers {
  207. workers[i] = newBatchWorker(nn)
  208. wg.Add(1)
  209. s := i
  210. go func() {
  211. workers[s].Run(teacher, s*chunkSize, (s+1)*chunkSize)
  212. wg.Done()
  213. }()
  214. }
  215. wg.Wait()
  216. return
  217. }
  218. func (nn *NeuralNetwork) SaveState(writer io.Writer) {
  219. //save input array count
  220. bufferSize := make([]byte, 4)
  221. binary.LittleEndian.PutUint32(bufferSize[0:], uint32(nn.LayerCount))
  222. _, err := writer.Write(bufferSize)
  223. check(err)
  224. fmt.Printf("wrote value %d\n", uint32(nn.LayerCount))
  225. // save an input array
  226. buffer := make([]byte, nn.LayerCount*4)
  227. for i := 0; i < nn.LayerCount; i++ {
  228. binary.LittleEndian.PutUint32(buffer[i*4:], uint32(nn.Sizes[i]))
  229. }
  230. _, err = writer.Write(buffer)
  231. check(err)
  232. // fmt.Printf("wrote buffer %d bytes\n", n2)
  233. //save biases
  234. ////////////////////////
  235. for i := 1; i < nn.LayerCount; i++ {
  236. saveDense(writer, nn.Biases[i])
  237. }
  238. //save weights
  239. ////////////////////////
  240. for i := 1; i < nn.LayerCount; i++ {
  241. saveDense(writer, nn.Weights[i])
  242. }
  243. }
  244. func (nn *NeuralNetwork) LoadState(reader io.Reader) {
  245. // Reade count
  246. nn.LayerCount = readInt(reader)
  247. // Read an input array
  248. sizeBuffer := readByteArray(reader, nn.LayerCount*4)
  249. nn.Sizes = make([]int, nn.LayerCount)
  250. for i := 0; i < nn.LayerCount; i++ {
  251. nn.Sizes[i] = int(binary.LittleEndian.Uint32(sizeBuffer[i*4:]))
  252. // fmt.Printf("LoadState: nn.Sizes[%d] %d \n", i, nn.Sizes[i])
  253. }
  254. nn.Weights = []*mat.Dense{&mat.Dense{}}
  255. nn.Biases = []*mat.Dense{&mat.Dense{}}
  256. // read Biases
  257. nn.Biases[0] = &mat.Dense{}
  258. for i := 1; i < nn.LayerCount; i++ {
  259. nn.Biases = append(nn.Biases, &mat.Dense{})
  260. nn.Biases[i] = readDense(reader, nn.Biases[i])
  261. }
  262. // read Weights
  263. nn.Weights[0] = &mat.Dense{}
  264. for i := 1; i < nn.LayerCount; i++ {
  265. nn.Weights = append(nn.Weights, &mat.Dense{})
  266. nn.Weights[i] = readDense(reader, nn.Weights[i])
  267. }
  268. // fmt.Printf("\nLoadState end\n")
  269. }
  270. func (nn NeuralNetwork) forward(aIn mat.Matrix) (A, Z []*mat.Dense) {
  271. A = make([]*mat.Dense, nn.LayerCount)
  272. Z = make([]*mat.Dense, nn.LayerCount)
  273. A[0] = mat.DenseCopyOf(aIn)
  274. for l := 1; l < nn.LayerCount; l++ {
  275. A[l] = mat.NewDense(nn.Sizes[l], 1, nil)
  276. aSrc := A[l-1]
  277. aDst := A[l]
  278. // Each iteration implements formula bellow for neuron activation values
  279. // A[l]=σ(W[l]*A[l−1]+B[l])
  280. // W[l]*A[l−1]
  281. aDst.Mul(nn.Weights[l], aSrc)
  282. // W[l]*A[l−1]+B[l]
  283. aDst.Add(aDst, nn.Biases[l])
  284. // Save raw activation value for back propagation
  285. Z[l] = mat.DenseCopyOf(aDst)
  286. // σ(W[l]*A[l−1]+B[l])
  287. aDst.Apply(applySigmoid, aDst)
  288. }
  289. return
  290. }
  291. // Function returns calculated bias and weights derivatives for each
  292. // layer arround aIn/aOut datasets
  293. func (nn NeuralNetwork) backward(aIn, aOut mat.Matrix) (dB, dW []*mat.Dense) {
  294. A, Z := nn.forward(aIn)
  295. lastLayerNum := nn.LayerCount - 1
  296. dB = make([]*mat.Dense, nn.LayerCount)
  297. dW = make([]*mat.Dense, nn.LayerCount)
  298. // To calculate new values of weights and biases
  299. // following formulas are used:
  300. // ∂E/∂W[l] = A[l−1]*δ[l]
  301. // ∂E/∂B[l] = δ[l]
  302. // For last layer δ value is calculated by following:
  303. // δ = (A[L]−y)⊙σ'(Z[L])
  304. // Calculate initial error for last layer L
  305. // error = A[L]-y
  306. // Where y is expected activations set
  307. err := &mat.Dense{}
  308. err.Sub(A[nn.LayerCount-1], aOut)
  309. // Calculate sigmoids prime σ'(Z[L]) for last layer L
  310. sigmoidsPrime := &mat.Dense{}
  311. sigmoidsPrime.Apply(applySigmoidPrime, Z[lastLayerNum])
  312. // (A[L]−y)⊙σ'(Z[L])
  313. delta := &mat.Dense{}
  314. delta.MulElem(err, sigmoidsPrime)
  315. // ∂E/∂B[L] = δ[L]
  316. biases := mat.DenseCopyOf(delta)
  317. // ∂E/∂W[L] = A[L−1]*δ[L]
  318. weights := &mat.Dense{}
  319. weights.Mul(delta, A[lastLayerNum-1].T())
  320. // Initialize new weights and biases values with last layer values
  321. dB[lastLayerNum] = biases
  322. dW[lastLayerNum] = weights
  323. // Next layer derivatives of Weights and Biases are calculated using same formulas:
  324. // ∂E/∂W[l] = A[l−1]*δ[l]
  325. // ∂E/∂B[l] = δ[l]
  326. // But δ[l] is calculated using different formula:
  327. // δ[l] = ((Wt[l+1])*δ[l+1])⊙σ'(Z[l])
  328. // Where Wt[l+1] is transposed matrix of actual Weights from
  329. // forward step
  330. for l := nn.LayerCount - 2; l > 0; l-- {
  331. // Calculate sigmoids prime σ'(Z[l]) for last layer l
  332. sigmoidsPrime := &mat.Dense{}
  333. sigmoidsPrime.Apply(applySigmoidPrime, Z[l])
  334. // (Wt[l+1])*δ[l+1]
  335. // err bellow is delta from previous step(l+1)
  336. wdelta := &mat.Dense{}
  337. wdelta.Mul(nn.Weights[l+1].T(), delta)
  338. // Calculate new delta and store it to temporary variable err
  339. // δ[l] = ((Wt[l+1])*δ[l+1])⊙σ'(Z[l])
  340. delta = &mat.Dense{}
  341. delta.MulElem(wdelta, sigmoidsPrime)
  342. // ∂E/∂B[l] = δ[l]
  343. biases := mat.DenseCopyOf(delta)
  344. // ∂E/∂W[l] = A[l−1]*δ[l]
  345. // At this point it's required to give explanation for inaccuracy
  346. // in the formula
  347. // Multiplying of activations matrix for layer l-1 and δ[l] is imposible
  348. // because view of matrices are following:
  349. // A[l-1] δ[l]
  350. // ⎡A[0] ⎤ ⎡δ[0] ⎤
  351. // ⎢A[1] ⎥ ⎢δ[1] ⎥
  352. // ⎢ ... ⎥ ⎢ ... ⎥
  353. // ⎢A[i] ⎥ X ⎢δ[i] ⎥
  354. // ⎢ ... ⎥ ⎢ ... ⎥
  355. // ⎣A[s'] ⎦ ⎣δ[s] ⎦
  356. // So we need to modify these matrices to apply mutiplications and got
  357. // Weights matrix of following view:
  358. // ⎡w[0,0] ... w[0,j] ... w[0,s']⎤
  359. // ⎢w[1,0] ... w[1,j] ... w[1,s']⎥
  360. // ⎢ ... ⎥
  361. // ⎢w[i,0] ... w[i,j] ... w[i,s']⎥
  362. // ⎢ ... ⎥
  363. // ⎣w[s,0] ... w[s,j] ... w[s,s']⎦
  364. // So we swap matrices and transpose A[l-1] to get valid multiplication
  365. // of following view:
  366. // δ[l] A[l-1]
  367. // ⎡δ[0] ⎤ x [A[0] A[1] ... A[i] ... A[s']]
  368. // ⎢δ[1] ⎥
  369. // ⎢ ... ⎥
  370. // ⎢δ[i] ⎥
  371. // ⎢ ... ⎥
  372. // ⎣δ[s] ⎦
  373. weights := &mat.Dense{}
  374. weights.Mul(delta, A[l-1].T())
  375. dB[l] = biases
  376. dW[l] = weights
  377. }
  378. return
  379. }