123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- /*
- * MIT License
- *
- * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>
- *
- * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy of this
- * software and associated documentation files (the "Software"), to deal in the Software
- * without restriction, including without limitation the rights to use, copy, modify,
- * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
- * to permit persons to whom the Software is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice shall be included in all copies
- * or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
- * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
- * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
- * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
- package training
- import (
- "encoding/binary"
- "io"
- "log"
- "os"
- mat "gonum.org/v1/gonum/mat"
- )
- type mnistReader struct {
- dataFilename string
- resultsFilename string
- validatorFilename string
- validatorResultsFilename string
- dataCount int
- validatorCount int
- imageSize int
- buffered *mat.Dense
- resultsBuffered *mat.Dense
- bufferedValidation *mat.Dense
- resultsBufferedValidation *mat.Dense
- }
- func NewMNISTReader(dataFilename string, resultsFilename string, validatorFilename string, validatorResultsFilename string) (r *mnistReader) {
- r = &mnistReader{}
- r.dataCount, r.imageSize = openFileSet(dataFilename, resultsFilename)
- r.validatorCount, _ = openFileSet(validatorFilename, validatorResultsFilename)
- if r.dataCount <= 0 || r.imageSize <= 0 || r.validatorCount <= 0 {
- return nil
- }
- return
- }
- func (r *mnistReader) GetData(i int) (*mat.Dense, *mat.Dense) {
- if r.dataCount <= i {
- return nil, nil
- }
- return r.readData(r.dataFilename, r.resultsFilename, i)
- }
- func (r *mnistReader) DataCount() int {
- return r.dataCount
- }
- func (r *mnistReader) GetValidator(i int) (data *mat.Dense, result *mat.Dense) {
- if r.validatorCount <= i {
- return nil, nil
- }
- return r.readData(r.validatorFilename, r.validatorResultsFilename, i)
- }
- func (r *mnistReader) ValidatorCount() int {
- return r.validatorCount
- }
- func (r *mnistReader) readData(data string, result string, i int) (buffered, resultsBuffered *mat.Dense) {
- file, err := os.Open(data)
- if err != nil {
- return nil, nil
- }
- defer file.Close()
- resultsFile, err := os.Open(result)
- if err != nil {
- return nil, nil
- }
- defer resultsFile.Close()
- file.Seek(16+int64(r.imageSize*i), 0)
- resultsFile.Seek(8+int64(i), 0)
- buffer := make([]byte, r.imageSize)
- _, err = file.Read(buffer)
- if err == io.EOF {
- return nil, nil
- } else if err != nil {
- log.Fatal("File read error\n")
- }
- values := make([]float64, r.imageSize)
- for i, v := range buffer {
- values[i] = float64(v) / 255.0
- }
- buffered = mat.NewDense(r.imageSize, 1, values)
- buffer = make([]byte, 1)
- _, err = resultsFile.Read(buffer)
- if err != nil {
- log.Fatal("Result file read error\n")
- }
- num := int(buffer[0])
- resultsBuffered = mat.NewDense(10, 1, nil)
- resultsBuffered.Set(num, 0, 1.0)
- return buffered, resultsBuffered
- }
- func openFileSet(dataFilename string, resultsFilename string) (count int, imageSize int) {
- var err error
- data, err := os.Open(dataFilename)
- if err != nil {
- return -1, -1
- }
- defer data.Close()
- result, err := os.Open(resultsFilename)
- if err != nil {
- return -1, -1
- }
- defer result.Close()
- buffer := make([]byte, 16)
- data.Read(buffer)
- header := binary.BigEndian.Uint32(buffer[:4])
- if header != 0x00000803 {
- return -1, -1
- }
- count = int(binary.BigEndian.Uint32(buffer[4:8]))
- imageSize = int(binary.BigEndian.Uint32(buffer[8:12])) * int(binary.BigEndian.Uint32(buffer[12:16]))
- buffer = make([]byte, 8)
- result.Read(buffer)
- header = binary.BigEndian.Uint32(buffer[0:4])
- if header != 0x00000801 {
- return -1, -1
- }
- resultsCount := int(binary.BigEndian.Uint32(buffer[4:8]))
- if resultsCount != count {
- return -1, -1
- }
- return
- }
|