1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- package main
- import (
- neuralnetwork "./neuralnetwork"
- remotecontrol "./remotecontrol"
- )
- func main() {
- sizes := []int{13, 8, 12, 3}
- nn, _ := neuralnetwork.NewNeuralNetwork(sizes, neuralnetwork.NewRPropInitializer(neuralnetwork.RPropConfig{
- NuPlus: 1.2,
- NuMinus: 0.5,
- DeltaMax: 50.0,
- DeltaMin: 0.000001,
- }))
- rc := &remotecontrol.RemoteControl{}
- nn.SetStateWatcher(rc)
- // inFile, err := os.Open("./networkstate")
- // if err != nil {
- // log.Fatal(err)
- // }
- // defer inFile.Close()
- // nn.LoadState(inFile)
- // nn, _ := neuralnetwork.NewNeuralNetwork(sizes, neuralnetwork.NewBackPropInitializer(0.1))
- // for i := 0; i < nn.Count; i++ {
- // if i > 0 {
- // fmt.Printf("Weights before:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0)))
- // fmt.Printf("Biases before:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0)))
- // fmt.Printf("Z before:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0)))
- // }
- // fmt.Printf("A before:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0)))
- // }
- // nn = &neuralnetwork.NeuralNetwork{}
- // inFile, err := os.Open("./data")
- // if err != nil {
- // log.Fatal(err)
- // }
- // defer inFile.Close()
- // nn.LoadState(inFile)
- // inFile.Close()
- // failCount = 0
- // teacher.Reset()
- // for teacher.NextValidator() {
- // dataSet, expect := teacher.GetValidator()
- // index, _ := nn.Predict(dataSet)
- // if expect.At(index, 0) != 1.0 {
- // failCount++
- // // fmt.Printf("Fail: %v, %v\n\n", teacher.ValidationIndex(), expect.At(index, 0))
- // }
- // }
- // fmt.Printf("Fail count: %v\n\n", failCount)
- rc.Run()
- }
|