neuralnetwork.go 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. package neuralnetworkbase
  2. import (
  3. mat "gonum.org/v1/gonum/mat"
  4. )
  5. type NeuralNetwork struct {
  6. Count int
  7. Sizes []int
  8. Biases []*mat.Dense
  9. Weights []*mat.Dense
  10. A []*mat.Dense
  11. Z []*mat.Dense
  12. alpha float64
  13. trainingCycles int
  14. }
  15. func (nn *NeuralNetwork) Result() *mat.Dense {
  16. return nn.A[nn.Count-1]
  17. }
  18. func NewNeuralNetwork(Sizes []int, nu float64, trainingCycles int) (nn *NeuralNetwork) {
  19. nn = &NeuralNetwork{}
  20. nn.Sizes = Sizes
  21. nn.Count = len(Sizes)
  22. nn.Weights = make([]*mat.Dense, nn.Count)
  23. nn.Biases = make([]*mat.Dense, nn.Count)
  24. nn.A = make([]*mat.Dense, nn.Count)
  25. nn.Z = make([]*mat.Dense, nn.Count)
  26. nn.alpha = nu / float64(nn.Sizes[0])
  27. nn.trainingCycles = trainingCycles
  28. for i := 1; i < nn.Count; i++ {
  29. nn.Weights[i] = generateRandomDense(nn.Sizes[i], nn.Sizes[i-1])
  30. nn.Biases[i] = generateRandomDense(nn.Sizes[i], 1)
  31. }
  32. return
  33. }
  34. func (nn *NeuralNetwork) Predict(aIn mat.Matrix) (maxIndex int, max float64) {
  35. nn.Forward(aIn)
  36. result := nn.Result()
  37. r, _ := result.Dims()
  38. max = 0.0
  39. maxIndex = 0
  40. for i := 0; i < r; i++ {
  41. if result.At(i, 0) > max {
  42. max = result.At(i, 0)
  43. maxIndex = i
  44. }
  45. }
  46. return
  47. }
  48. func (nn *NeuralNetwork) Train(dataSet, expect []*mat.Dense) {
  49. dataSetSize := len(dataSet)
  50. for i := 0; i < nn.trainingCycles; i++ {
  51. for j := dataSetSize - 1; j >= 0; j -= 3 {
  52. if j < 0 {
  53. j = 0
  54. }
  55. nn.Backward(dataSet[j], expect[j])
  56. }
  57. }
  58. }
  59. func (nn *NeuralNetwork) SaveState(filename string) {
  60. }
  61. func (nn *NeuralNetwork) LoadState(filename string) {
  62. }
  63. func (nn *NeuralNetwork) Forward(aIn mat.Matrix) {
  64. nn.A[0] = mat.DenseCopyOf(aIn)
  65. for i := 1; i < nn.Count; i++ {
  66. nn.A[i] = mat.NewDense(nn.Sizes[i], 1, nil)
  67. aSrc := nn.A[i-1]
  68. aDst := nn.A[i]
  69. // r, c := nn.Weights[i].Dims()
  70. // fmt.Printf("r: %v,c: %v\n", r, c)
  71. // r, c = aSrc.Dims()
  72. // fmt.Printf("src r: %v,c: %v\n\n\n", r, c)
  73. aDst.Mul(nn.Weights[i], aSrc)
  74. aDst.Add(aDst, nn.Biases[i])
  75. nn.Z[i] = mat.DenseCopyOf(aDst)
  76. aDst.Apply(applySigmoid, aDst)
  77. }
  78. }
  79. func (nn *NeuralNetwork) Backward(aIn, aOut mat.Matrix) {
  80. nn.Forward(aIn)
  81. lastLayerNum := nn.Count - 1
  82. //Initial error
  83. err := &mat.Dense{}
  84. err.Sub(nn.Result(), aOut)
  85. sigmoidsPrime := &mat.Dense{}
  86. sigmoidsPrime.Apply(applySigmoidPrime, nn.Z[lastLayerNum])
  87. delta := &mat.Dense{}
  88. delta.MulElem(err, sigmoidsPrime)
  89. biases := mat.DenseCopyOf(delta)
  90. weights := &mat.Dense{}
  91. weights.Mul(delta, nn.A[lastLayerNum-1].T())
  92. newBiases := []*mat.Dense{makeBackGradien(biases, nn.Biases[lastLayerNum], nn.alpha)}
  93. newWeights := []*mat.Dense{makeBackGradien(weights, nn.Weights[lastLayerNum], nn.alpha)}
  94. err = delta
  95. for i := nn.Count - 2; i > 0; i-- {
  96. sigmoidsPrime := &mat.Dense{}
  97. sigmoidsPrime.Apply(applySigmoidPrime, nn.Z[i])
  98. delta := &mat.Dense{}
  99. wdelta := &mat.Dense{}
  100. wdelta.Mul(nn.Weights[i+1].T(), err)
  101. delta.MulElem(wdelta, sigmoidsPrime)
  102. err = delta
  103. biases := mat.DenseCopyOf(delta)
  104. weights := &mat.Dense{}
  105. weights.Mul(delta, nn.A[i-1].T())
  106. // Scale down
  107. newBiases = append([]*mat.Dense{makeBackGradien(biases, nn.Biases[i], nn.alpha)}, newBiases...)
  108. newWeights = append([]*mat.Dense{makeBackGradien(weights, nn.Weights[i], nn.alpha)}, newWeights...)
  109. }
  110. newBiases = append([]*mat.Dense{&mat.Dense{}}, newBiases...)
  111. newWeights = append([]*mat.Dense{&mat.Dense{}}, newWeights...)
  112. nn.Biases = newBiases
  113. nn.Weights = newWeights
  114. }
  115. func makeBackGradien(in mat.Matrix, actual mat.Matrix, alpha float64) *mat.Dense {
  116. scaled := &mat.Dense{}
  117. result := &mat.Dense{}
  118. scaled.Scale(alpha, in)
  119. result.Sub(actual, scaled)
  120. return result
  121. }