123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714 |
- /*
- * MIT License
- *
- * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>, Tatyana Borisova <tanusshhka@mail.ru>
- *
- * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy of this
- * software and associated documentation files (the "Software"), to deal in the Software
- * without restriction, including without limitation the rights to use, copy, modify,
- * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
- * to permit persons to whom the Software is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice shall be included in all copies
- * or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
- * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
- * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
- * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
- package neuralnetwork
- import (
- "encoding/binary"
- "errors"
- "fmt"
- "io"
- "log"
- "math"
- "os"
- "sync"
- "time"
- training "git.semlanik.org/semlanik/NeuralNetwork/training"
- mat "gonum.org/v1/gonum/mat"
- )
- // NeuralNetwork is artificial neural network implementation
- //
- // Resources:
- // http://neuralnetworksanddeeplearning.com
- // https://www.youtube.com/watch?v=fNk_zzaMoSs
- // http://www.inf.fu-berlin.de/lehre/WS06/Musterererkennung/Paper/rprop.pdf
- //
- // Matrix: A (local matrices used in forward and backward methods)
- // Description: A is set of calculated neuron activations after sigmoid correction
- // Format: 0 l L
- // ⎡A[0] ⎤ ... ⎡A[0] ⎤ ... ⎡A[0] ⎤
- // ⎢A[1] ⎥ ... ⎢A[1] ⎥ ... ⎢A[1] ⎥
- // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
- // ⎢A[i] ⎥ ... ⎢A[i] ⎥ ... ⎢A[i] ⎥
- // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
- // ⎣A[s] ⎦ ... ⎣A[s] ⎦ ... ⎣A[s] ⎦
- // Where s = Sizes[l] - Neural network layer size
- // L = len(Sizes) - Number of neural network layers
- //
- // Matrix: Z (local matrices used in forward and backward methods)
- // Description: Z is set of calculated raw neuron activations
- // Format: 0 l L
- // ⎡Z[0] ⎤ ... ⎡Z[0] ⎤ ... ⎡Z[0] ⎤
- // ⎢Z[1] ⎥ ... ⎢Z[1] ⎥ ... ⎢Z[1] ⎥
- // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
- // ⎢Z[i] ⎥ ... ⎢Z[i] ⎥ ... ⎢Z[i] ⎥
- // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
- // ⎣Z[s] ⎦ ... ⎣Z[s] ⎦ ... ⎣Z[s] ⎦
- // Where s = Sizes[l] - Neural network layer size
- // L = len(Sizes) - Number of neural network layers
- //
- // Matrix: Biases
- // Description: Biases is set of biases per layer except l0
- // NOTE: l0 is always empty Dense because first layer
- // doesn't have connections to previous layer
- // Format: 1 l L
- // ⎡b[0] ⎤ ... ⎡b[0] ⎤ ... ⎡b[0] ⎤
- // ⎢b[1] ⎥ ... ⎢b[1] ⎥ ... ⎢b[1] ⎥
- // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
- // ⎢b[i] ⎥ ... ⎢b[i] ⎥ ... ⎢b[i] ⎥
- // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
- // ⎣b[s] ⎦ ... ⎣b[s] ⎦ ... ⎣b[s] ⎦
- // Where s = Sizes[l] - Neural network layer size
- // L = len(Sizes) - Number of neural network layers
- //
- // Matrix: Weights
- // Description: Weights is set of weights per layer except l0
- // NOTE: l0 is always empty Dense because first layer
- // doesn't have connections to previous layer
- // Format: 1 l L
- // ⎡w[0,0] ... w[0,j] ... w[0,s']⎤ ... ⎡w[0,0] ... w[0,j] ... w[0,s']⎤ ... ⎡w[0,0] ... w[0,j] ... w[0,s']⎤
- // ⎢w[1,0] ... w[1,j] ... w[1,s']⎥ ... ⎢w[1,0] ... w[1,j] ... w[1,s']⎥ ... ⎢w[1,0] ... w[1,j] ... w[1,s']⎥
- // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
- // ⎢w[i,0] ... w[i,j] ... w[i,s']⎥ ... ⎢w[i,0] ... w[i,j] ... w[i,s']⎥ ... ⎢w[i,0] ... w[i,j] ... w[i,s']⎥
- // ⎢ ... ⎥ ... ⎢ ... ⎥ ... ⎢ ... ⎥
- // ⎣w[s,0] ... w[s,j] ... w[s,s']⎦ ... ⎣w[s,0] ... w[s,j] ... w[s,s']⎦ ... ⎣w[s,0] ... w[s,j] ... w[s,s']⎦
- // Where s = Sizes[l] - Neural network layer size
- // s' = Sizes[l-1] - Previous neural network layer size
- // L = len(Sizes) - Number of neural network layers
- type NeuralNetwork struct {
- LayerCount int
- Sizes []int
- Biases []*mat.Dense
- Weights []*mat.Dense
- BGradient []interface{}
- WGradient []interface{}
- gradientDescentInitializer GradientDescentInitializer
- watcher StateWatcher
- syncMutex *sync.Mutex
- batchWorkerFactory BatchWorkerFactory
- earlyStop EarlyStop
- }
- // NewNeuralNetwork construction method that initializes new NeuralNetwork based
- // on provided list of layer sizes and GradientDescentInitializer that used for
- // backpropagation mechanism.
- // If gradientDescentInitializer is not provided (is nil) backpropagation won't
- // be possible. Common usecase when it's used is natural selection and genetic
- // training.
- func NewNeuralNetwork(sizes []int, gradientDescentInitializer GradientDescentInitializer) (nn *NeuralNetwork, err error) {
- err = nil
- if len(sizes) < 3 {
- fmt.Printf("Invalid network configuration: %v\n", sizes)
- return nil, errors.New("Invalid network configuration: %v\n")
- }
- for i := 0; i < len(sizes); i++ {
- if sizes[i] < 2 {
- fmt.Printf("Invalid network configuration: %v\n", sizes)
- return nil, errors.New("Invalid network configuration: %v\n")
- }
- }
- lenSizes := len(sizes)
- nn = &NeuralNetwork{
- Sizes: sizes,
- LayerCount: len(sizes),
- Biases: make([]*mat.Dense, lenSizes),
- Weights: make([]*mat.Dense, lenSizes),
- BGradient: make([]interface{}, lenSizes),
- WGradient: make([]interface{}, lenSizes),
- gradientDescentInitializer: gradientDescentInitializer,
- syncMutex: &sync.Mutex{},
- earlyStop: &noEarlyStop{},
- }
- for l := 1; l < nn.LayerCount; l++ {
- nn.Biases[l] = generateRandomDense(nn.Sizes[l], 1)
- nn.Weights[l] = generateRandomDense(nn.Sizes[l], nn.Sizes[l-1])
- if nn.gradientDescentInitializer != nil {
- nn.BGradient[l] = nn.gradientDescentInitializer(nn, l, BiasGradient)
- nn.WGradient[l] = nn.gradientDescentInitializer(nn, l, WeightGradient)
- }
- }
- return
- }
- // Copy makes complete copy of NeuralNetwork data. Output network has the same
- // weights and biases values and but might be used independend of original one,
- // e.g. in separate goroutine
- func (nn *NeuralNetwork) Copy() (outNN *NeuralNetwork) {
- nn.syncMutex.Lock()
- defer nn.syncMutex.Unlock()
- outNN = &NeuralNetwork{
- Sizes: nn.Sizes,
- LayerCount: len(nn.Sizes),
- Biases: make([]*mat.Dense, nn.LayerCount),
- Weights: make([]*mat.Dense, nn.LayerCount),
- BGradient: make([]interface{}, nn.LayerCount),
- WGradient: make([]interface{}, nn.LayerCount),
- gradientDescentInitializer: nn.gradientDescentInitializer,
- watcher: nn.watcher,
- syncMutex: &sync.Mutex{},
- earlyStop: &noEarlyStop{},
- }
- for l := 1; l < outNN.LayerCount; l++ {
- outNN.Biases[l] = mat.DenseCopyOf(nn.Biases[l])
- outNN.Weights[l] = mat.DenseCopyOf(nn.Weights[l])
- if outNN.gradientDescentInitializer != nil {
- outNN.BGradient[l] = outNN.gradientDescentInitializer(outNN, l, BiasGradient)
- outNN.WGradient[l] = outNN.gradientDescentInitializer(outNN, l, WeightGradient)
- }
- }
- return
- }
- // SetBatchWorkerFactory setup batch worker factory for batch training. In case if
- // factory is not setup localBatchWorkerFactory will be used.
- func (nn *NeuralNetwork) SetBatchWorkerFactory(factory BatchWorkerFactory) {
- nn.batchWorkerFactory = factory
- }
- // SetEarlyStop setup early stop analyser to stop training before all training epocs finished.
- // Usually early stop required to avoid overfitting in neural network.
- func (nn *NeuralNetwork) SetEarlyStop(earlyStop EarlyStop) {
- nn.earlyStop = earlyStop
- }
- // Reset resets network state to intial/random one with specified in argument
- // layers configuration.
- func (nn *NeuralNetwork) Reset(sizes []int) (err error) {
- nn.syncMutex.Lock()
- defer nn.syncMutex.Unlock()
- err = nil
- if len(sizes) < 3 {
- fmt.Printf("Invalid network configuration: %v\n", sizes)
- return errors.New("Invalid network configuration: %v\n")
- }
- for i := 0; i < len(sizes); i++ {
- if sizes[i] < 2 {
- fmt.Printf("Invalid network configuration: %v\n", sizes)
- return errors.New("Invalid network configuration: %v\n")
- }
- }
- lenSizes := len(sizes)
- nn.Sizes = sizes
- nn.LayerCount = len(sizes)
- nn.Biases = make([]*mat.Dense, lenSizes)
- nn.Weights = make([]*mat.Dense, lenSizes)
- nn.BGradient = make([]interface{}, lenSizes)
- nn.WGradient = make([]interface{}, lenSizes)
- for l := 1; l < nn.LayerCount; l++ {
- nn.Biases[l] = generateRandomDense(nn.Sizes[l], 1)
- nn.Weights[l] = generateRandomDense(nn.Sizes[l], nn.Sizes[l-1])
- if nn.gradientDescentInitializer != nil {
- nn.BGradient[l] = nn.gradientDescentInitializer(nn, l, BiasGradient)
- nn.WGradient[l] = nn.gradientDescentInitializer(nn, l, WeightGradient)
- }
- }
- return
- }
- // SetStateWatcher setups state watcher for NeuralNetwork. StateWatcher is common
- // interface that collects data about NeuralNetwork behavior. If not specified (is
- // set to nil) NeuralNetwork will ignore StateWatcher interations.
- func (nn *NeuralNetwork) SetStateWatcher(watcher StateWatcher) {
- nn.watcher = watcher
- if watcher != nil {
- watcher.Init(nn)
- if nn.watcher.GetSubscriptionFeatures().Has(StateSubscription) {
- watcher.UpdateState(StateIdle)
- }
- }
- }
- // Predict method invokes prediction based on input activations provided in argument.
- // Returns index of best element in output activation matrix and its value.
- func (nn *NeuralNetwork) Predict(aIn mat.Matrix) (maxIndex int, max float64) {
- nn.syncMutex.Lock()
- defer nn.syncMutex.Unlock()
- if nn.watcher != nil {
- if nn.watcher.GetSubscriptionFeatures().Has(StateSubscription) {
- nn.watcher.UpdateState(StatePredict)
- defer nn.watcher.UpdateState(StateIdle)
- }
- }
- r, _ := aIn.Dims()
- if r != nn.Sizes[0] {
- fmt.Printf("Invalid rows number of input matrix size: %v\n", r)
- return -1, 0.0
- }
- A, _ := nn.forward(aIn)
- result := A[nn.LayerCount-1]
- r, _ = result.Dims()
- max = 0.0
- maxIndex = 0
- for i := 0; i < r; i++ {
- if result.At(i, 0) > max {
- max = result.At(i, 0)
- maxIndex = i
- }
- }
- return
- }
- // Validate runs basic network validation/verification based on validation data that
- // provided by training.Trainer passed as argument.
- // Returns count of failure predictions and total amount of verified samples and mean square sum of errors for all samples
- func (nn *NeuralNetwork) Validate(trainer training.Trainer) (squareError float64, failCount, total int) {
- failCount = 0
- squareError = 0.0
- total = trainer.ValidatorCount()
- nn.syncMutex.Lock()
- defer nn.syncMutex.Unlock()
- if nn.watcher != nil {
- if nn.watcher.GetSubscriptionFeatures().Has(StateSubscription) {
- nn.watcher.UpdateState(StateValidation)
- defer nn.watcher.UpdateState(StateIdle)
- }
- }
- for i := 0; i < trainer.ValidatorCount(); i++ {
- aIn, aOut := trainer.GetValidator(i)
- r, _ := aIn.Dims()
- if r != nn.Sizes[0] {
- fmt.Printf("Invalid rows number of input matrix size: %v\n", r)
- return math.MaxFloat64, total, total
- }
- A, _ := nn.forward(aIn)
- result := A[nn.LayerCount-1]
- r, _ = result.Dims()
- err := &mat.Dense{}
- err.Sub(result, aOut)
- var squareErrorLocal float64 = 0.0
- max := 0.0
- maxIndex := 0
- for i := 0; i < r; i++ {
- if result.At(i, 0) > max {
- max = result.At(i, 0)
- maxIndex = i
- }
- squareErrorLocal += err.At(i, 0) * err.At(i, 0)
- }
- if aOut.At(maxIndex, 0) != 1.0 {
- failCount++
- }
- squareError += squareErrorLocal / float64(r)
- }
- if nn.watcher != nil {
- if nn.watcher.GetSubscriptionFeatures().Has(ValidationSubscription) {
- nn.watcher.UpdateValidation(total, failCount)
- }
- }
- return
- }
- // Train is common training function that invokes one of training methods depends on
- // gradient descent used buy NeuralNetwork. training.Trainer passed as argument used
- // to get training data. Training loops are limited buy number of epocs.
- func (nn *NeuralNetwork) Train(trainer training.Trainer, epocs int) {
- if nn.watcher != nil {
- if nn.watcher.GetSubscriptionFeatures().Has(StateSubscription) {
- nn.watcher.UpdateState(StateLearning)
- defer nn.watcher.UpdateState(StateIdle)
- }
- }
- if nn.earlyStop != nil {
- nn.earlyStop.Reset()
- nn.earlyStop.Test()
- }
- if _, ok := nn.WGradient[nn.LayerCount-1].(OnlineGradientDescent); ok {
- nn.trainOnline(trainer, epocs)
- } else if _, ok := nn.WGradient[nn.LayerCount-1].(BatchGradientDescent); ok {
- nn.trainBatch(trainer, epocs)
- } else {
- panic("Invalid gradient descent type")
- }
- }
- func (nn *NeuralNetwork) trainOnline(trainer training.Trainer, epocs int) {
- for t := 0; t < epocs; t++ {
- for i := 0; i < trainer.DataCount(); i++ {
- if nn.watcher != nil {
- if nn.watcher.GetSubscriptionFeatures().Has(TrainingSubscription) {
- nn.watcher.UpdateTraining(t, epocs, i, trainer.DataCount())
- }
- }
- nn.syncMutex.Lock()
- dB, dW := nn.backward(trainer.GetData(i))
- for l := 1; l < nn.LayerCount; l++ {
- bGradient, ok := nn.BGradient[l].(OnlineGradientDescent)
- if !ok {
- panic("bGradient is not a OnlineGradientDescent")
- }
- wGradient, ok := nn.WGradient[l].(OnlineGradientDescent)
- if !ok {
- panic("wGradient is not a OnlineGradientDescent")
- }
- nn.Biases[l] = bGradient.ApplyDelta(nn.Biases[l], dB[l])
- nn.Weights[l] = wGradient.ApplyDelta(nn.Weights[l], dW[l])
- if nn.watcher != nil {
- if nn.watcher.GetSubscriptionFeatures().Has(BiasesSubscription) {
- nn.watcher.UpdateBiases(l, mat.DenseCopyOf(nn.Biases[l]))
- }
- if nn.watcher.GetSubscriptionFeatures().Has(WeightsSubscription) {
- nn.watcher.UpdateWeights(l, mat.DenseCopyOf(nn.Weights[l]))
- }
- }
- }
- nn.syncMutex.Unlock()
- }
- if nn.earlyStop != nil && nn.earlyStop.Test() {
- log.Printf("Training stopped due to fail rate grow\n")
- break
- }
- }
- }
- func (nn *NeuralNetwork) trainBatch(trainer training.Trainer, epocs int) {
- for t := 0; t < epocs; t++ {
- if nn.watcher != nil {
- if nn.watcher.GetSubscriptionFeatures().Has(TrainingSubscription) {
- nn.watcher.UpdateTraining(t, epocs, 0, trainer.DataCount())
- }
- }
- batchWorkers := nn.runBatchWorkers(trainer)
- nn.syncMutex.Lock()
- for l := 1; l < nn.LayerCount; l++ {
- bGradient, ok := nn.BGradient[l].(BatchGradientDescent)
- if !ok {
- panic("bGradient is not a BatchGradientDescent")
- }
- wGradient, ok := nn.WGradient[l].(BatchGradientDescent)
- if !ok {
- panic("wGradient is not a BatchGradientDescent")
- }
- for _, bw := range batchWorkers {
- dB, dW := bw.Result(l)
- bGradient.AccumGradients(dB)
- wGradient.AccumGradients(dW)
- }
- nn.Biases[l] = bGradient.ApplyDelta(nn.Biases[l])
- nn.Weights[l] = wGradient.ApplyDelta(nn.Weights[l])
- if nn.watcher != nil {
- if nn.watcher.GetSubscriptionFeatures().Has(BiasesSubscription) {
- nn.watcher.UpdateBiases(l, mat.DenseCopyOf(nn.Biases[l]))
- }
- if nn.watcher.GetSubscriptionFeatures().Has(WeightsSubscription) {
- nn.watcher.UpdateWeights(l, mat.DenseCopyOf(nn.Weights[l]))
- }
- }
- }
- nn.syncMutex.Unlock()
- if nn.earlyStop != nil && nn.earlyStop.Test() {
- log.Printf("Training stopped due to fail rate grow\n")
- break
- }
- if nn.watcher.GetSubscriptionFeatures().Has(BiasesSubscription) || nn.watcher.GetSubscriptionFeatures().Has(WeightsSubscription) {
- time.Sleep(100 * time.Millisecond) //TODO: it's better to add 'Latency() int' method to watcher, for check above
- }
- }
- }
- func (nn *NeuralNetwork) runBatchWorkers(trainer training.Trainer) (workers []BatchWorker) {
- if nn.batchWorkerFactory == nil {
- nn.batchWorkerFactory = NewLocalBatchWorkerFactory(nn)
- log.Printf("Batch Worker factory is not set, using local one\n")
- }
- wg := sync.WaitGroup{}
- threadCount := nn.batchWorkerFactory.GetAvailableThreads()
- chunkSize := trainer.DataCount() / threadCount
- workers = make([]BatchWorker, threadCount)
- for i, _ := range workers {
- workers[i] = nn.batchWorkerFactory.GetBatchWorker()
- wg.Add(1)
- s := i
- go func() {
- workers[s].Run(trainer, s*chunkSize, (s+1)*chunkSize)
- wg.Done()
- }()
- }
- wg.Wait()
- return
- }
- // SaveState saves state of NeuralNetwork to io.Writer. It's usefull to keep training results
- // between NeuralNetwork "power cycles" or to share traing results between clustered neural
- // network hosts.
- func (nn *NeuralNetwork) SaveState(writer io.Writer) {
- nn.syncMutex.Lock()
- defer nn.syncMutex.Unlock()
- //save input array count
- bufferSize := make([]byte, 4)
- binary.LittleEndian.PutUint32(bufferSize[0:], uint32(nn.LayerCount))
- _, err := writer.Write(bufferSize)
- check(err)
- //fmt.Printf("wrote value %d\n", uint32(nn.LayerCount))
- // save an input array
- buffer := make([]byte, nn.LayerCount*4)
- for i := 0; i < nn.LayerCount; i++ {
- binary.LittleEndian.PutUint32(buffer[i*4:], uint32(nn.Sizes[i]))
- }
- _, err = writer.Write(buffer)
- check(err)
- // fmt.Printf("wrote buffer %d bytes\n", n2)
- //save biases
- for i := 1; i < nn.LayerCount; i++ {
- saveDense(writer, nn.Biases[i])
- }
- //save weights
- for i := 1; i < nn.LayerCount; i++ {
- saveDense(writer, nn.Weights[i])
- }
- }
- // SaveStateToFile saves NeuralNetwork state to file by specific filePath.
- func (nn *NeuralNetwork) SaveStateToFile(filePath string) {
- outFile, err := os.OpenFile(filePath, os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0666)
- check(err)
- defer outFile.Close()
- nn.SaveState(outFile)
- }
- // LoadState loads NeuralNetwork state from io.Reader. All existing data in NeuralNetwork
- // will be rewritten buy this method, including layers configuration and weights and biases.
- func (nn *NeuralNetwork) LoadState(reader io.Reader) {
- nn.syncMutex.Lock()
- defer nn.syncMutex.Unlock()
- // Read count
- nn.LayerCount = readInt(reader)
- // Read an input array
- sizeBuffer := readByteArray(reader, nn.LayerCount*4)
- nn.Sizes = make([]int, nn.LayerCount)
- for l := 0; l < nn.LayerCount; l++ {
- nn.Sizes[l] = int(binary.LittleEndian.Uint32(sizeBuffer[l*4:]))
- fmt.Printf("LoadState: nn.Sizes[%d] %d \n", l, nn.Sizes[l])
- }
- nn.Weights = []*mat.Dense{&mat.Dense{}}
- nn.Biases = []*mat.Dense{&mat.Dense{}}
- // read Biases
- nn.Biases[0] = &mat.Dense{}
- for l := 1; l < nn.LayerCount; l++ {
- nn.Biases = append(nn.Biases, &mat.Dense{})
- nn.Biases[l] = readDense(reader, nn.Biases[l])
- }
- // read Weights and initialize gradient descents
- nn.BGradient = make([]interface{}, nn.LayerCount)
- nn.WGradient = make([]interface{}, nn.LayerCount)
- nn.Weights[0] = &mat.Dense{}
- for l := 1; l < nn.LayerCount; l++ {
- nn.Weights = append(nn.Weights, &mat.Dense{})
- nn.Weights[l] = readDense(reader, nn.Weights[l])
- if nn.gradientDescentInitializer != nil {
- nn.BGradient[l] = nn.gradientDescentInitializer(nn, l, BiasGradient)
- nn.WGradient[l] = nn.gradientDescentInitializer(nn, l, WeightGradient)
- }
- }
- // fmt.Printf("\nLoadState end\n")
- }
- // LoadStateFromFile loads NeuralNetwork state from file by specific filePath.
- func (nn *NeuralNetwork) LoadStateFromFile(filePath string) {
- inFile, err := os.Open(filePath)
- check(err)
- defer inFile.Close()
- nn.LoadState(inFile)
- }
- func (nn NeuralNetwork) forward(aIn mat.Matrix) (A, Z []*mat.Dense) {
- A = make([]*mat.Dense, nn.LayerCount)
- Z = make([]*mat.Dense, nn.LayerCount)
- A[0] = mat.DenseCopyOf(aIn)
- if nn.watcher != nil {
- if nn.watcher.GetSubscriptionFeatures().Has(ActivationsSubscription) {
- nn.watcher.UpdateActivations(0, mat.DenseCopyOf(A[0]))
- }
- }
- for l := 1; l < nn.LayerCount; l++ {
- A[l] = mat.NewDense(nn.Sizes[l], 1, nil)
- aSrc := A[l-1]
- aDst := A[l]
- // Each iteration implements formula bellow for neuron activation values
- // A[l]=σ(W[l]*A[l−1]+B[l])
- // W[l]*A[l−1]
- aDst.Mul(nn.Weights[l], aSrc)
- // W[l]*A[l−1]+B[l]
- aDst.Add(aDst, nn.Biases[l])
- // Save raw activation value for back propagation
- Z[l] = mat.DenseCopyOf(aDst)
- // σ(W[l]*A[l−1]+B[l])
- aDst.Apply(applySigmoid, aDst)
- if nn.watcher != nil {
- if nn.watcher.GetSubscriptionFeatures().Has(ActivationsSubscription) {
- nn.watcher.UpdateActivations(l, mat.DenseCopyOf(aDst))
- }
- }
- }
- return
- }
- // Function returns calculated bias and weights derivatives for each
- // layer arround aIn/aOut datasets.
- func (nn NeuralNetwork) backward(aIn, aOut mat.Matrix) (dB, dW []*mat.Dense) {
- A, Z := nn.forward(aIn)
- lastLayerNum := nn.LayerCount - 1
- dB = make([]*mat.Dense, nn.LayerCount)
- dW = make([]*mat.Dense, nn.LayerCount)
- // To calculate new values of weights and biases
- // following formulas are used:
- // ∂E/∂W[l] = A[l−1]*δ[l]
- // ∂E/∂B[l] = δ[l]
- // For last layer δ value is calculated by following:
- // δ = (A[L]−y)⊙σ'(Z[L])
- // Calculate initial error for last layer L
- // error = A[L]-y
- // Where y is expected activations set
- err := &mat.Dense{}
- err.Sub(A[nn.LayerCount-1], aOut)
- // Calculate sigmoids prime σ'(Z[L]) for last layer L
- sigmoidsPrime := &mat.Dense{}
- sigmoidsPrime.Apply(applySigmoidPrime, Z[lastLayerNum])
- // (A[L]−y)⊙σ'(Z[L])
- delta := &mat.Dense{}
- delta.MulElem(err, sigmoidsPrime)
- // ∂E/∂B[L] = δ[L]
- biases := mat.DenseCopyOf(delta)
- // ∂E/∂W[L] = A[L−1]*δ[L]
- weights := &mat.Dense{}
- weights.Mul(delta, A[lastLayerNum-1].T())
- // Initialize new weights and biases values with last layer values
- dB[lastLayerNum] = biases
- dW[lastLayerNum] = weights
- // Next layer derivatives of Weights and Biases are calculated using same formulas:
- // ∂E/∂W[l] = A[l−1]*δ[l]
- // ∂E/∂B[l] = δ[l]
- // But δ[l] is calculated using different formula:
- // δ[l] = ((Wt[l+1])*δ[l+1])⊙σ'(Z[l])
- // Where Wt[l+1] is transposed matrix of actual Weights from
- // forward step
- for l := nn.LayerCount - 2; l > 0; l-- {
- // Calculate sigmoids prime σ'(Z[l]) for last layer l
- sigmoidsPrime := &mat.Dense{}
- sigmoidsPrime.Apply(applySigmoidPrime, Z[l])
- // (Wt[l+1])*δ[l+1]
- // err bellow is delta from previous step(l+1)
- wdelta := &mat.Dense{}
- wdelta.Mul(nn.Weights[l+1].T(), delta)
- // Calculate new delta and store it to temporary variable err
- // δ[l] = ((Wt[l+1])*δ[l+1])⊙σ'(Z[l])
- delta = &mat.Dense{}
- delta.MulElem(wdelta, sigmoidsPrime)
- // ∂E/∂B[l] = δ[l]
- biases := mat.DenseCopyOf(delta)
- // ∂E/∂W[l] = A[l−1]*δ[l]
- // At this point it's required to give explanation for inaccuracy
- // in the formula
- // Multiplying of activations matrix for layer l-1 and δ[l] is imposible
- // because view of matrices are following:
- // A[l-1] δ[l]
- // ⎡A[0] ⎤ ⎡δ[0] ⎤
- // ⎢A[1] ⎥ ⎢δ[1] ⎥
- // ⎢ ... ⎥ ⎢ ... ⎥
- // ⎢A[i] ⎥ X ⎢δ[i] ⎥
- // ⎢ ... ⎥ ⎢ ... ⎥
- // ⎣A[s'] ⎦ ⎣δ[s] ⎦
- // So we need to modify these matrices to apply mutiplications and got
- // Weights matrix of following view:
- // ⎡w[0,0] ... w[0,j] ... w[0,s']⎤
- // ⎢w[1,0] ... w[1,j] ... w[1,s']⎥
- // ⎢ ... ⎥
- // ⎢w[i,0] ... w[i,j] ... w[i,s']⎥
- // ⎢ ... ⎥
- // ⎣w[s,0] ... w[s,j] ... w[s,s']⎦
- // So we swap matrices and transpose A[l-1] to get valid multiplication
- // of following view:
- // δ[l] A[l-1]
- // ⎡δ[0] ⎤ x [A[0] A[1] ... A[i] ... A[s']]
- // ⎢δ[1] ⎥
- // ⎢ ... ⎥
- // ⎢δ[i] ⎥
- // ⎢ ... ⎥
- // ⎣δ[s] ⎦
- weights := &mat.Dense{}
- weights.Mul(delta, A[l-1].T())
- dB[l] = biases
- dW[l] = weights
- }
- return
- }
|