main.go 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. package main
  2. import (
  3. "fmt"
  4. neuralnetwork "./neuralnetworkbase"
  5. mat "gonum.org/v1/gonum/mat"
  6. )
  7. func main() {
  8. sizes := []int{4, 8, 8, 3}
  9. nn := neuralnetwork.NewNeuralNetwork(sizes, 0.1, 481)
  10. for i := 0; i < nn.Count; i++ {
  11. if i > 0 {
  12. fmt.Printf("Weights before:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0)))
  13. fmt.Printf("Biases before:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0)))
  14. fmt.Printf("Z before:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0)))
  15. }
  16. fmt.Printf("A before:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0)))
  17. }
  18. dataSet, result := readData("./iris.data")
  19. nn.Train(dataSet, result)
  20. for i := 0; i < nn.Count; i++ {
  21. if i > 0 {
  22. fmt.Printf("Weights after:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0)))
  23. fmt.Printf("Biases after:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0)))
  24. fmt.Printf("Z after:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0)))
  25. }
  26. fmt.Printf("A after:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0)))
  27. }
  28. // data := make([]float64, sizes[0])
  29. // for i := range data {
  30. // data[i] = rand.Float64()
  31. // }
  32. // aIn := mat.NewDense(sizes[0], 1, data)
  33. failCount := 0
  34. for i := 0; i < len(dataSet); i++ {
  35. index, _ := nn.Predict(dataSet[i])
  36. if result[i].At(index, 0) != 1.0 {
  37. failCount++
  38. fmt.Printf("Fail: %v, %v\n\n", i, result[i].At(index, 0))
  39. }
  40. }
  41. fmt.Printf("Fail count: %v\n\n", failCount)
  42. }