1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 |
- package main
- import (
- "fmt"
- neuralnetwork "./neuralnetworkbase"
- mat "gonum.org/v1/gonum/mat"
- )
- func main() {
- sizes := []int{4, 8, 8, 3}
- nn := neuralnetwork.NewNeuralNetwork(sizes, 0.1, 481)
- for i := 0; i < nn.Count; i++ {
- if i > 0 {
- fmt.Printf("Weights before:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0)))
- fmt.Printf("Biases before:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0)))
- fmt.Printf("Z before:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0)))
- }
- fmt.Printf("A before:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0)))
- }
- dataSet, result := readData("./iris.data")
- nn.Train(dataSet, result)
- for i := 0; i < nn.Count; i++ {
- if i > 0 {
- fmt.Printf("Weights after:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0)))
- fmt.Printf("Biases after:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0)))
- fmt.Printf("Z after:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0)))
- }
- fmt.Printf("A after:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0)))
- }
- // data := make([]float64, sizes[0])
- // for i := range data {
- // data[i] = rand.Float64()
- // }
- // aIn := mat.NewDense(sizes[0], 1, data)
- failCount := 0
- for i := 0; i < len(dataSet); i++ {
- index, _ := nn.Predict(dataSet[i])
- if result[i].At(index, 0) != 1.0 {
- failCount++
- fmt.Printf("Fail: %v, %v\n\n", i, result[i].At(index, 0))
- }
- }
- fmt.Printf("Fail count: %v\n\n", failCount)
- }
|