batchworker.go 2.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667
  1. /*
  2. * MIT License
  3. *
  4. * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>
  5. *
  6. * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy of this
  9. * software and associated documentation files (the "Software"), to deal in the Software
  10. * without restriction, including without limitation the rights to use, copy, modify,
  11. * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
  12. * to permit persons to whom the Software is furnished to do so, subject to the following
  13. * conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all copies
  16. * or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
  19. * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
  20. * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
  21. * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  22. * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  23. * DEALINGS IN THE SOFTWARE.
  24. */
  25. package neuralnetworkbase
  26. import (
  27. teach "../teach"
  28. mat "gonum.org/v1/gonum/mat"
  29. )
  30. type batchWorker struct {
  31. network *NeuralNetwork
  32. BGradient []BatchGradientDescent
  33. WGradient []BatchGradientDescent
  34. batchSize int
  35. }
  36. func newBatchWorker(nn *NeuralNetwork) (bw *batchWorker) {
  37. bw = &batchWorker{
  38. network: nn,
  39. BGradient: make([]BatchGradientDescent, nn.layerCount),
  40. WGradient: make([]BatchGradientDescent, nn.layerCount),
  41. }
  42. for l := 1; l < nn.layerCount; l++ {
  43. bw.BGradient[l] = nn.gradientDescentInitializer(nn, l, BiasGradient).(BatchGradientDescent)
  44. bw.WGradient[l] = nn.gradientDescentInitializer(nn, l, WeightGradient).(BatchGradientDescent)
  45. }
  46. return
  47. }
  48. func (bw *batchWorker) Run(teacher teach.Teacher, startIndex, endIndex int) {
  49. for i := startIndex; i < endIndex; i++ {
  50. dB, dW := bw.network.backward(teacher.GetDataByIndex(i))
  51. for l := 1; l < bw.network.layerCount; l++ {
  52. bw.BGradient[l].AccumGradients(dB[l])
  53. bw.WGradient[l].AccumGradients(dW[l])
  54. }
  55. }
  56. teacher.Reset()
  57. }
  58. func (bw *batchWorker) Result(layer int) (dB, dW *mat.Dense) {
  59. return bw.BGradient[layer].Gradients(), bw.WGradient[layer].Gradients()
  60. }