12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- /*
- * MIT License
- *
- * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>
- *
- * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy of this
- * software and associated documentation files (the "Software"), to deal in the Software
- * without restriction, including without limitation the rights to use, copy, modify,
- * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
- * to permit persons to whom the Software is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice shall be included in all copies
- * or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
- * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
- * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
- * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
- package gradients
- import (
- neuralnetwork "git.semlanik.org/semlanik/NeuralNetwork/neuralnetwork"
- mat "gonum.org/v1/gonum/mat"
- )
- // Simple backpropagation with constant value η
- type backPropGradient struct {
- alpha float64
- }
- func NewBackPropInitializer(nu float64) neuralnetwork.GradientDescentInitializer {
- return func(nn *neuralnetwork.NeuralNetwork, layer, gradientType int) interface{} {
- return newBackPropGradient(nu / float64(nn.Sizes[0]))
- }
- }
- func newBackPropGradient(a float64) (g *backPropGradient) {
- g = &backPropGradient{alpha: a}
- return
- }
- func (g *backPropGradient) ApplyDelta(m mat.Matrix, gradient mat.Matrix) (result *mat.Dense) {
- // Gradient change of actual matrix using:
- // m[l]′ = m[l] − η * ∂C/∂m
- // Where ∂E/∂m is `in` matrix
- scaled := &mat.Dense{}
- result = &mat.Dense{}
- // η * ∂E/∂m
- scaled.Scale(g.alpha, gradient)
- // m[l] − η * ∂E/∂m
- result.Sub(m, scaled)
- return result
- }
|