main.go 1.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. package main
  2. import (
  3. neuralnetwork "./neuralnetworkbase"
  4. remotecontrol "./remotecontrol"
  5. )
  6. func main() {
  7. sizes := []int{13, 8, 12, 3}
  8. nn, _ := neuralnetwork.NewNeuralNetwork(sizes, neuralnetwork.NewRPropInitializer(neuralnetwork.RPropConfig{
  9. NuPlus: 1.2,
  10. NuMinus: 0.5,
  11. DeltaMax: 50.0,
  12. DeltaMin: 0.000001,
  13. }))
  14. rc := &remotecontrol.RemoteControl{}
  15. nn.SetStateWatcher(rc)
  16. // inFile, err := os.Open("./networkstate")
  17. // if err != nil {
  18. // log.Fatal(err)
  19. // }
  20. // defer inFile.Close()
  21. // nn.LoadState(inFile)
  22. // nn, _ := neuralnetwork.NewNeuralNetwork(sizes, neuralnetwork.NewBackPropInitializer(0.1))
  23. // for i := 0; i < nn.Count; i++ {
  24. // if i > 0 {
  25. // fmt.Printf("Weights before:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0)))
  26. // fmt.Printf("Biases before:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0)))
  27. // fmt.Printf("Z before:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0)))
  28. // }
  29. // fmt.Printf("A before:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0)))
  30. // }
  31. // nn = &neuralnetwork.NeuralNetwork{}
  32. // inFile, err := os.Open("./data")
  33. // if err != nil {
  34. // log.Fatal(err)
  35. // }
  36. // defer inFile.Close()
  37. // nn.LoadState(inFile)
  38. // inFile.Close()
  39. // failCount = 0
  40. // teacher.Reset()
  41. // for teacher.NextValidator() {
  42. // dataSet, expect := teacher.GetValidator()
  43. // index, _ := nn.Predict(dataSet)
  44. // if expect.At(index, 0) != 1.0 {
  45. // failCount++
  46. // // fmt.Printf("Fail: %v, %v\n\n", teacher.ValidationIndex(), expect.At(index, 0))
  47. // }
  48. // }
  49. // fmt.Printf("Fail count: %v\n\n", failCount)
  50. rc.Run()
  51. }