123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- package genetic
- import (
- "fmt"
- "log"
- "math/rand"
- "sort"
- neuralnetwork "../neuralnetwork"
- )
- type PopulationConfig struct {
- PopulationSize int
- SelectionSize float64 // 0..1 persentage of success individuals to be used as parents for population
- CrossbreedPart float64 // 0..1 persentage of weights and biases to be exchanged beetween individuals while Crossbreed
- }
- type Population struct {
- populationConfig *PopulationConfig
- Networks []*neuralnetwork.NeuralNetwork
- verifier PopulationVerifier
- mutagen Mutagen
- etalonsCount int
- }
- func NewPopulation(verifier PopulationVerifier, mutagen Mutagen, populationConfig PopulationConfig, sizes []int) (p *Population) {
- if populationConfig.PopulationSize%2 != 0 {
- return nil
- }
- p = &Population{
- populationConfig: &populationConfig,
- Networks: make([]*neuralnetwork.NeuralNetwork, populationConfig.PopulationSize),
- verifier: verifier,
- mutagen: mutagen,
- etalonsCount: int(float64(populationConfig.PopulationSize) * populationConfig.SelectionSize),
- }
- if p.etalonsCount%2 != 0 {
- p.etalonsCount -= 1
- }
- for i := 0; i < populationConfig.PopulationSize; i++ {
- var err error
- p.Networks[i], err = neuralnetwork.NewNeuralNetwork(sizes, nil)
- if err != nil {
- log.Fatal("Could not initialize NeuralNetwork")
- }
- }
- return
- }
- func (p *Population) NaturalSelection(generationCount int) {
- for g := 0; g < generationCount; g++ {
- p.crossbreedPopulation(p.verifier.Verify(p))
- }
- }
- func (p *Population) crossbreedPopulation(fitnesses []*IndividalFitness) {
- sort.Slice(fitnesses, func(i, j int) bool {
- return fitnesses[i].Fitness > fitnesses[j].Fitness //Descent order best will be on top, worst in the bottom
- })
- //Collect etalons from upper part of neural network list and crossbreed/mutate them
- etalonNetworks := make([]*neuralnetwork.NeuralNetwork, p.etalonsCount)
- for i := 1; i < p.etalonsCount; i += 2 {
- firstParent := fitnesses[i-1].Index
- secondParent := fitnesses[i].Index
- fmt.Printf("Result i %v firstParent %v secondParent %v firstFitness %v secondFitness %v\n", i, firstParent, secondParent, fitnesses[i-1].Fitness, fitnesses[i].Fitness)
- etalonNetworks[i-1] = p.Networks[firstParent].Copy()
- etalonNetworks[i] = p.Networks[secondParent].Copy()
- crossbreed(p.Networks[firstParent], p.Networks[secondParent], p.populationConfig.CrossbreedPart)
- p.mutagen.Mutate(p.Networks[firstParent])
- p.mutagen.Mutate(p.Networks[secondParent])
- }
- //Rest of networks are based on collected etalons but crossbreed/mutate own way
- for i := p.etalonsCount + 1; i < p.populationConfig.PopulationSize; i += 2 {
- firstParent := fitnesses[i-1].Index
- secondParent := fitnesses[i].Index
- fmt.Printf("Result i %v firstParent %v secondParent %v firstFitness %v secondFitness %v firstEtalon %v secondEtalon %v\n",
- i, firstParent, secondParent,
- fitnesses[i-1].Fitness, fitnesses[i].Fitness,
- fitnesses[(i-1)%p.etalonsCount].Index, fitnesses[(i)%p.etalonsCount].Index)
- firstParentEtalon := etalonNetworks[(i-1)%p.etalonsCount]
- secondParenEtalon := etalonNetworks[(i)%p.etalonsCount]
- p.Networks[firstParent] = firstParentEtalon.Copy()
- p.Networks[secondParent] = secondParenEtalon.Copy()
- crossbreed(p.Networks[firstParent], p.Networks[secondParent], p.populationConfig.CrossbreedPart)
- p.mutagen.Mutate(p.Networks[firstParent])
- p.mutagen.Mutate(p.Networks[secondParent])
- }
- }
- func crossbreed(firstParent, secondParent *neuralnetwork.NeuralNetwork, crossbreedPart float64) {
- for l := 1; l < firstParent.LayerCount; l++ {
- firstParentWeights := firstParent.Weights[l]
- secondParentWeights := secondParent.Weights[l]
- firstParentBiases := firstParent.Biases[l]
- secondParentBiases := secondParent.Biases[l]
- r, c := firstParentWeights.Dims()
- rp := int(float64(r) * crossbreedPart)
- cp := int(float64(c) * crossbreedPart)
- r = int(rand.Uint32())%(r-rp) + rp
- c = int(rand.Uint32())%(c-cp) + cp
- // for i := 0; i < int(float64(r)*crossbreedPart); i++ {
- for i := 0; i < r; i++ {
- for j := 0; j < c; j++ {
- // Swap first half of weights
- w := firstParentWeights.At(i, j)
- firstParentWeights.Set(i, j, secondParentWeights.At(i, j))
- secondParentWeights.Set(i, j, w)
- }
- // Swap first half of biases
- b := firstParentBiases.At(i, 0)
- firstParentBiases.Set(i, 0, secondParentBiases.At(i, 0))
- secondParentBiases.Set(i, 0, b)
- }
- }
- }
|