main.go 1.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. package main
  2. import (
  3. "./neuralnetwork"
  4. "./remotecontrol"
  5. )
  6. func main() {
  7. rc := remotecontrol.NewRemoteControl()
  8. sizes := []int{13, 8, 12, 3}
  9. nn, _ := neuralnetwork.NewNeuralNetwork(sizes, neuralnetwork.NewRPropInitializer(neuralnetwork.RPropConfig{
  10. NuPlus: 1.2,
  11. NuMinus: 0.5,
  12. DeltaMax: 50.0,
  13. DeltaMin: 0.000001,
  14. }))
  15. nn.SetStateWatcher(rc)
  16. rc.Run()
  17. // inFile, err := os.Open("./networkstate")
  18. // if err != nil {
  19. // log.Fatal(err)
  20. // }
  21. // defer inFile.Close()
  22. // nn.LoadState(inFile)
  23. // nn, _ := neuralnetwork.NewNeuralNetwork(sizes, neuralnetwork.NewBackPropInitializer(0.1))
  24. // for i := 0; i < nn.Count; i++ {
  25. // if i > 0 {
  26. // fmt.Printf("Weights before:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0)))
  27. // fmt.Printf("Biases before:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0)))
  28. // fmt.Printf("Z before:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0)))
  29. // }
  30. // fmt.Printf("A before:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0)))
  31. // }
  32. // nn = &neuralnetwork.NeuralNetwork{}
  33. // inFile, err := os.Open("./data")
  34. // if err != nil {
  35. // log.Fatal(err)
  36. // }
  37. // defer inFile.Close()
  38. // nn.LoadState(inFile)
  39. // inFile.Close()
  40. // failCount = 0
  41. // training.Reset()
  42. // for training.NextValidator() {
  43. // dataSet, expect := training.GetValidator()
  44. // index, _ := nn.Predict(dataSet)
  45. // if expect.At(index, 0) != 1.0 {
  46. // failCount++
  47. // // fmt.Printf("Fail: %v, %v\n\n", training.ValidationIndex(), expect.At(index, 0))
  48. // }
  49. // }
  50. // fmt.Printf("Fail count: %v\n\n", failCount)
  51. }