package neuralnetwork import ( "testing" "gonum.org/v1/gonum/mat" ) func TestNewNeuralNetwork(t *testing.T) { nn, err := NewNeuralNetwork([]int{}, nil) if nn != nil || err == nil { t.Error("nn initialized, but shouldn't ", err) } nn, err = NewNeuralNetwork([]int{0, 0, 0, 0}, nil) if nn != nil || err == nil { t.Error("nn initialized, but shouldn't ", err) } nn, err = NewNeuralNetwork([]int{1, 1, 1, 1}, nil) if nn != nil || err == nil { t.Error("nn initialized, but shouldn't ", err) } nn, err = NewNeuralNetwork([]int{5, 5}, nil) if nn != nil || err == nil { t.Error("nn initialized, but shouldn't ", err) } nn, err = NewNeuralNetwork([]int{5, 1, 5, 5}, nil) if nn != nil || err == nil { t.Error("nn initialized, but shouldn't ", err) } nn, err = NewNeuralNetwork([]int{5, 4, 4, 5}, nil) if nn == nil || err != nil { t.Error("nn is not initialized, but should be ", err) } } func TestNeuralNetworkPredict(t *testing.T) { nn, _ := NewNeuralNetwork([]int{3, 4, 4, 2}, nil) aIn := &mat.Dense{} index, max := nn.Predict(aIn) if index != -1 || max != 0.0 { t.Error("Prediction when empty aIn shouldn't be possibe but predicted", index, max) } aIn = mat.NewDense(2, 1, []float64{0.1, 0.2}) index, max = nn.Predict(aIn) if index != -1 || max != 0.0 { t.Error("Prediction aIn has invalid size shouldn't be possibe but predicted", index, max) } aIn = mat.NewDense(3, 1, []float64{0.1, 0.2, 0.3}) index, max = nn.Predict(aIn) if index == -1 || max == 0.0 { t.Error("Prediction of aIn valid size should be predicted", index, max) } aIn = mat.NewDense(4, 1, []float64{0.1, 0.2, 0.3, 0.4}) index, max = nn.Predict(aIn) if index != -1 || max != 0.0 { t.Error("Prediction aIn has invalid size shouldn't be possibe but predicted", index, max) } }