package neuralnetworkbase import ( math "math" rand "math/rand" "time" mat "gonum.org/v1/gonum/mat" ) func generateRandomDense(rows, columns int) *mat.Dense { rand.Seed(time.Now().UnixNano()) data := make([]float64, rows*columns) for i := range data { data[i] = rand.NormFloat64() } return mat.NewDense(rows, columns, data) } func applySigmoid(_, _ int, x float64) float64 { return sigmoid(x) } func applySigmoidPrime(_, _ int, x float64) float64 { return sigmoidPrime(x) } func sigmoid(x float64) float64 { return 1.0 / (1.0 + math.Exp(-x)) } func sigmoidPrime(x float64) float64 { return sigmoid(x) * (1 - sigmoid(x)) } func makeBackGradien(in mat.Matrix, actual mat.Matrix, alpha float64) *mat.Dense { scaled := &mat.Dense{} result := &mat.Dense{} scaled.Scale(alpha, in) result.Sub(actual, scaled) return result }