package neuralnetworkbase import ( mat "gonum.org/v1/gonum/mat" ) type NeuralNetwork struct { Count int Sizes []int Biases []*mat.Dense Weights []*mat.Dense A []*mat.Dense Z []*mat.Dense alpha float64 } func (nn *NeuralNetwork) Result() *mat.Dense { return nn.A[nn.Count-1] } func NewNeuralNetwork(Sizes []int) (nn *NeuralNetwork) { nn = &NeuralNetwork{} nn.Sizes = Sizes nn.Count = len(Sizes) nn.Weights = make([]*mat.Dense, nn.Count) nn.Biases = make([]*mat.Dense, nn.Count) nn.A = make([]*mat.Dense, nn.Count) nn.Z = make([]*mat.Dense, nn.Count) nn.alpha = 0.2 / float64(nn.Sizes[0]) for i := 1; i < nn.Count; i++ { nn.Weights[i] = generateRandomDense(nn.Sizes[i], nn.Sizes[i-1]) nn.Biases[i] = generateRandomDense(nn.Sizes[i], 1) } return } func (nn *NeuralNetwork) Predict(aIn mat.Matrix) (maxIndex int, max float64) { nn.Forward(aIn) result := nn.Result() r, _ := result.Dims() max = 0.0 maxIndex = 0 for i := 0; i < r; i++ { if result.At(i, 0) > max { max = result.At(i, 0) maxIndex = i } } return } func (nn *NeuralNetwork) Forward(aIn mat.Matrix) { nn.A[0] = mat.DenseCopyOf(aIn) for i := 1; i < nn.Count; i++ { nn.A[i] = mat.NewDense(nn.Sizes[i], 1, nil) aSrc := nn.A[i-1] aDst := nn.A[i] aDst.Mul(nn.Weights[i], aSrc) aDst.Add(aDst, nn.Biases[i]) nn.Z[i] = mat.DenseCopyOf(aDst) aDst.Apply(applySigmoid, aDst) } } func (nn *NeuralNetwork) Backward(aIn, aOut mat.Matrix) { nn.Forward(aOut) //Initial error err := &mat.Dense{} err.Sub(aOut, nn.Result()) for i := nn.Count - 1; i > 0; i-- { sigmoidsPrime := &mat.Dense{} sigmoidsPrime.Apply(applySigmoidPrime, nn.Z[i]) delta := &mat.Dense{} delta.MulElem(err, sigmoidsPrime) err = delta biases := mat.DenseCopyOf(delta) weights := &mat.Dense{} weights.Mul(nn.A[i-1], delta) // Scale down nn.Weights[i] = makeBackGradien(weights, nn.Weights[i], nn.alpha) nn.Biases[i] = makeBackGradien(biases, nn.Biases[i], nn.alpha) } } func makeBackGradien(in mat.Matrix, actual mat.Matrix, alpha float64) *mat.Dense { scaled := &mat.Dense{} result := &mat.Dense{} scaled.Scale(alpha, in) result.Sub(actual, scaled) return result }