/* * MIT License * * Copyright (c) 2019 Alexey Edelev * * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * software and associated documentation files (the "Software"), to deal in the Software * without restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, and * to permit persons to whom the Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be included in all copies * or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ package gradients import ( "math" neuralnetwork "git.semlanik.org/semlanik/NeuralNetwork/neuralnetwork" mat "gonum.org/v1/gonum/mat" ) // Resilient backpropagation type rPropGradient struct { gradientsPrev *mat.Dense gradients *mat.Dense deltas *mat.Dense batchSize int config RPropConfig } type RPropConfig struct { NuPlus float64 NuMinus float64 DeltaMax float64 DeltaMin float64 } func NewRPropInitializer(config RPropConfig) neuralnetwork.GradientDescentInitializer { return func(nn *neuralnetwork.NeuralNetwork, layer, gradientType int) interface{} { if gradientType == neuralnetwork.BiasGradient { return newRPropGradient(nn.Sizes[layer], 1, config) } return newRPropGradient(nn.Sizes[layer], nn.Sizes[layer-1], config) } } func newRPropGradient(r, c int, config RPropConfig) (g *rPropGradient) { g = &rPropGradient{} deltas := make([]float64, r*c) for j, _ := range deltas { deltas[j] = 0.1 } g.gradients = mat.NewDense(r, c, nil) g.gradientsPrev = mat.NewDense(r, c, nil) g.deltas = mat.NewDense(r, c, deltas) g.config = config return } func (g *rPropGradient) ApplyDelta(m mat.Matrix) (result *mat.Dense) { nuPlus := g.config.NuPlus nuMinus := g.config.NuMinus deltaMax := g.config.DeltaMax deltaMin := g.config.DeltaMin result = &mat.Dense{} gradient := g.gradients r, c := gradient.Dims() dividers := make([]float64, r*c) for i := range dividers { dividers[i] = float64(g.batchSize) } gradientDivider := mat.NewDense(r, c, dividers) gradient.DivElem(gradient, gradientDivider) result.Apply(func(i, j int, v float64) (outV float64) { gradientSign := g.gradientsPrev.At(i, j) * gradient.At(i, j) if gradientSign > 0 { g.deltas.Set(i, j, math.Min(nuPlus*g.deltas.At(i, j), deltaMax)) outV = v - sign(gradient.At(i, j))*g.deltas.At(i, j) g.gradientsPrev.Set(i, j, gradient.At(i, j)) } else if gradientSign < 0 { outV = v g.deltas.Set(i, j, math.Max(nuMinus*g.deltas.At(i, j), deltaMin)) g.gradientsPrev.Set(i, j, 0.0) } else { outV = v - sign(gradient.At(i, j))*g.deltas.At(i, j) g.gradientsPrev.Set(i, j, gradient.At(i, j)) } return }, m) g.batchSize = 0 g.gradients = mat.NewDense(r, c, nil) return result } func (g *rPropGradient) AccumGradients(gradient mat.Matrix, batchSize int) { g.gradients.Apply(func(i, j int, v float64) float64 { v += gradient.At(i, j) return v }, g.gradients) g.batchSize += batchSize } func (g rPropGradient) Gradients() *mat.Dense { return g.gradients }