/* * MIT License * * Copyright (c) 2019 Alexey Edelev * * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * software and associated documentation files (the "Software"), to deal in the Software * without restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, and * to permit persons to whom the Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be included in all copies * or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ package remotecontrol import ( context "context" fmt "fmt" "log" "net" "os" "sync" "time" "google.golang.org/grpc/codes" status "google.golang.org/grpc/status" neuralnetworkbase "../neuralnetworkbase" "gonum.org/v1/gonum/mat" grpc "google.golang.org/grpc" teach "../teach" ) type RemoteControl struct { nn *neuralnetworkbase.NeuralNetwork activationsQueue chan *LayerMatrix biasesQueue chan *LayerMatrix weightsQueue chan *LayerMatrix mutex sync.Mutex } func (rw *RemoteControl) Init(nn *neuralnetworkbase.NeuralNetwork) { rw.nn = nn rw.activationsQueue = make(chan *LayerMatrix, 10) rw.biasesQueue = make(chan *LayerMatrix, 10) rw.weightsQueue = make(chan *LayerMatrix, 10) } func (rw *RemoteControl) UpdateActivations(l int, a *mat.Dense) { matrix := NewLayerMatrix(l, a, LayerMatrix_Activations) select { case rw.activationsQueue <- matrix: default: } } func (rw *RemoteControl) UpdateBiases(l int, biases *mat.Dense) { matrix := NewLayerMatrix(l, biases, LayerMatrix_Biases) select { case rw.biasesQueue <- matrix: default: } } func (rw *RemoteControl) UpdateWeights(l int, weights *mat.Dense) { matrix := NewLayerMatrix(l, weights, LayerMatrix_Weights) select { case rw.weightsQueue <- matrix: default: } } func NewLayerMatrix(l int, dense *mat.Dense, contentType LayerMatrix_ContentType) (matrix *LayerMatrix) { buffer, err := dense.MarshalBinary() if err != nil { log.Fatalln("Invalid dense is provided for remote control") } matrix = &LayerMatrix{ Matrix: &Matrix{ Matrix: buffer, }, Layer: int32(l), ContentType: contentType, } return } func (rw *RemoteControl) GetConfiguration(context.Context, *None) (*Configuration, error) { config := &Configuration{} for _, size := range rw.nn.Sizes { config.Sizes = append(config.Sizes, int32(size)) } return config, nil } func (rw *RemoteControl) Activations(_ *None, srv RemoteControl_ActivationsServer) error { ctx := srv.Context() for { select { case <-ctx.Done(): return ctx.Err() default: } msg := <-rw.activationsQueue srv.Send(msg) } } func (rw *RemoteControl) Biases(_ *None, srv RemoteControl_BiasesServer) error { ctx := srv.Context() for { select { case <-ctx.Done(): return ctx.Err() default: } msg := <-rw.biasesQueue srv.Send(msg) } } func (rw *RemoteControl) Weights(_ *None, srv RemoteControl_WeightsServer) error { ctx := srv.Context() for { select { case <-ctx.Done(): return ctx.Err() default: } msg := <-rw.weightsQueue srv.Send(msg) } } func (rw *RemoteControl) Predict(context.Context, *Matrix) (*Matrix, error) { return nil, status.Error(codes.Unimplemented, "Not implemented") } func (rw *RemoteControl) DummyStart(context.Context, *None) (*None, error) { go func() { rw.mutex.Lock() defer rw.mutex.Unlock() // teacher := teach.NewMNISTReader("./minst.data", "./mnist.labels") teacher := teach.NewTextDataReader("wine.data", 5) rw.nn.Teach(teacher, 500) // for i := 0; i < nn.Count; i++ { // if i > 0 { // fmt.Printf("Weights after:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0))) // fmt.Printf("Biases after:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0))) // fmt.Printf("Z after:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0))) // } // fmt.Printf("A after:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0))) // } outFile, err := os.OpenFile("./data", os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0666) if err != nil { log.Fatal(err) } defer outFile.Close() rw.nn.SaveState(outFile) outFile.Close() time.Sleep(5 * time.Second) failCount := 0 teacher.Reset() for teacher.NextValidator() { dataSet, expect := teacher.GetValidator() index, _ := rw.nn.Predict(dataSet) //TODO: remove this is not used for visualization time.Sleep(400 * time.Millisecond) if expect.At(index, 0) != 1.0 { failCount++ // fmt.Printf("Fail: %v, %v\n\n", teacher.ValidationIndex(), expect.At(index, 0)) } if !teacher.NextValidator() { fmt.Printf("Fail count: %v\n\n", failCount) failCount = 0 teacher.Reset() } } fmt.Printf("Fail count: %v\n\n", failCount) failCount = 0 teacher.Reset() }() return &None{}, nil } func (rw *RemoteControl) Run() { grpcServer := grpc.NewServer() RegisterRemoteControlServer(grpcServer, rw) lis, err := net.Listen("tcp", "localhost:65001") if err != nil { fmt.Printf("Failed to listen: %v\n", err) } fmt.Printf("Listen localhost:65001\n") if err := grpcServer.Serve(lis); err != nil { fmt.Printf("Failed to serve: %v\n", err) } }