package main import ( "fmt" neuralnetwork "./neuralnetworkbase" mat "gonum.org/v1/gonum/mat" ) func main() { dataSet, result := readData("./iris.data") sizes := []int{4, 2, 2, 3} nn := neuralnetwork.NewNeuralNetwork(sizes) for i := 0; i < len(dataSet); i++ { fmt.Printf("Dataset[%d]:\n%v\n\n", i, mat.Formatted(dataSet[i], mat.Prefix(""), mat.Excerpt(0))) fmt.Printf("Result[%d]:\n%v\n\n", i, mat.Formatted(result[i], mat.Prefix(""), mat.Excerpt(0))) nn.Backward(dataSet[i], result[i]) } // data := make([]float64, sizes[0]) // for i := range data { // data[i] = rand.Float64() // } // aIn := mat.NewDense(sizes[0], 1, data) max, index := nn.Predict(dataSet[0]) for i := 0; i < nn.Count; i++ { if i > 0 { fmt.Printf("Weights:\n%v\n\n", mat.Formatted(nn.Weights[i], mat.Prefix(""), mat.Excerpt(0))) fmt.Printf("Biases:\n%v\n\n", mat.Formatted(nn.Biases[i], mat.Prefix(""), mat.Excerpt(0))) fmt.Printf("Z:\n%v\n\n", mat.Formatted(nn.Z[i], mat.Prefix(""), mat.Excerpt(0))) } fmt.Printf("A:\n%v\n\n", mat.Formatted(nn.A[i], mat.Prefix(""), mat.Excerpt(0))) } fmt.Printf("Resul: %v, %v\n\n", index, max) }