|
@@ -0,0 +1,142 @@
|
|
|
+/*
|
|
|
+ * MIT License
|
|
|
+ *
|
|
|
+ * Copyright (c) 2019 Alexey Edelev <semlanik@gmail.com>
|
|
|
+ *
|
|
|
+ * This file is part of NeuralNetwork project https://git.semlanik.org/semlanik/NeuralNetwork
|
|
|
+ *
|
|
|
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of this
|
|
|
+ * software and associated documentation files (the "Software"), to deal in the Software
|
|
|
+ * without restriction, including without limitation the rights to use, copy, modify,
|
|
|
+ * merge, publish, distribute, sublicense, and/or sell copies of the Software, and
|
|
|
+ * to permit persons to whom the Software is furnished to do so, subject to the following
|
|
|
+ * conditions:
|
|
|
+ *
|
|
|
+ * The above copyright notice and this permission notice shall be included in all copies
|
|
|
+ * or substantial portions of the Software.
|
|
|
+ *
|
|
|
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
|
|
+ * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
|
|
+ * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
|
|
|
+ * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
|
+ * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
+ * DEALINGS IN THE SOFTWARE.
|
|
|
+ */
|
|
|
+
|
|
|
+package teach
|
|
|
+
|
|
|
+import (
|
|
|
+ "encoding/binary"
|
|
|
+ "fmt"
|
|
|
+ "io"
|
|
|
+ "log"
|
|
|
+ "os"
|
|
|
+
|
|
|
+ mat "gonum.org/v1/gonum/mat"
|
|
|
+)
|
|
|
+
|
|
|
+type MNISTReader struct {
|
|
|
+ file *os.File
|
|
|
+ resultsFile *os.File
|
|
|
+ size int
|
|
|
+ imageSize int
|
|
|
+ buffered *mat.Dense
|
|
|
+ resultsBuffered *mat.Dense
|
|
|
+}
|
|
|
+
|
|
|
+func NewMNISTReader(dataFilename string, resultsFilename string) (r *MNISTReader) {
|
|
|
+ r = &MNISTReader{}
|
|
|
+
|
|
|
+ var err error
|
|
|
+ r.file, err = os.Open(dataFilename)
|
|
|
+ if err != nil {
|
|
|
+ return nil
|
|
|
+ }
|
|
|
+
|
|
|
+ r.resultsFile, err = os.Open(resultsFilename)
|
|
|
+ if err != nil {
|
|
|
+ return nil
|
|
|
+ }
|
|
|
+
|
|
|
+ buffer := make([]byte, 16)
|
|
|
+ r.file.Read(buffer)
|
|
|
+ header := binary.BigEndian.Uint32(buffer[:4])
|
|
|
+ if header != 0x00000803 {
|
|
|
+ return nil
|
|
|
+ }
|
|
|
+ r.size = int(binary.BigEndian.Uint32(buffer[4:8]))
|
|
|
+ r.imageSize = int(binary.BigEndian.Uint32(buffer[8:12])) * int(binary.BigEndian.Uint32(buffer[12:16]))
|
|
|
+ fmt.Printf("Image size: %v\n", r.imageSize)
|
|
|
+ buffer = make([]byte, 8)
|
|
|
+ r.resultsFile.Read(buffer)
|
|
|
+ header = binary.BigEndian.Uint32(buffer[0:4])
|
|
|
+ if header != 0x00000801 {
|
|
|
+ return nil
|
|
|
+ }
|
|
|
+ resultsSize := int(binary.BigEndian.Uint32(buffer[4:8]))
|
|
|
+ if resultsSize != r.size {
|
|
|
+ return nil
|
|
|
+ }
|
|
|
+
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+func (r *MNISTReader) GetData() *mat.Dense {
|
|
|
+ return r.buffered
|
|
|
+}
|
|
|
+
|
|
|
+func (r *MNISTReader) GetExpect() *mat.Dense {
|
|
|
+ return r.resultsBuffered
|
|
|
+}
|
|
|
+
|
|
|
+func (r *MNISTReader) Next() bool {
|
|
|
+ buffer := make([]byte, r.imageSize)
|
|
|
+ _, err := r.file.Read(buffer)
|
|
|
+
|
|
|
+ if err == io.EOF {
|
|
|
+ r.file.Seek(16, 0)
|
|
|
+ r.resultsFile.Seek(8, 0)
|
|
|
+ return false
|
|
|
+ } else if err != nil {
|
|
|
+ log.Fatal("File read error\n")
|
|
|
+ }
|
|
|
+
|
|
|
+ values := make([]float64, r.imageSize)
|
|
|
+ for i, v := range buffer {
|
|
|
+ values[i] = float64(v) / 255.0
|
|
|
+ }
|
|
|
+
|
|
|
+ r.buffered = mat.NewDense(r.imageSize, 1, values)
|
|
|
+
|
|
|
+ // values = make([]float64, len(values))
|
|
|
+ // for i, v := range buffer {
|
|
|
+ // if v > 0 {
|
|
|
+ // values[i] = 1
|
|
|
+ // } else {
|
|
|
+ // values[i] = 0
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+
|
|
|
+ // squareDense := mat.NewDense(28, 28, values)
|
|
|
+ // fmt.Printf("r.buffered:\n%v\n\n", mat.Formatted(squareDense, mat.Prefix(""), mat.Excerpt(0), mat.Squeeze()))
|
|
|
+
|
|
|
+ buffer = make([]byte, 1)
|
|
|
+ _, err = r.resultsFile.Read(buffer)
|
|
|
+ if err != nil {
|
|
|
+ log.Fatal("Result file read error\n")
|
|
|
+ }
|
|
|
+
|
|
|
+ num := int(buffer[0])
|
|
|
+
|
|
|
+ r.resultsBuffered = mat.NewDense(10, 1, nil)
|
|
|
+ r.resultsBuffered.Set(num, 0, 1.0)
|
|
|
+
|
|
|
+ // fmt.Printf("r.resultsBuffered:\n%v\n\n", mat.Formatted(r.resultsBuffered, mat.Prefix(""), mat.Excerpt(0)))
|
|
|
+
|
|
|
+ return true
|
|
|
+}
|
|
|
+
|
|
|
+func (r *MNISTReader) Reset() {
|
|
|
+ r.file.Seek(16, 0)
|
|
|
+ r.resultsFile.Seek(8, 0)
|
|
|
+}
|